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PREFACE

This book is a revised and expanded version of a series of talks
given in Hanoi at the Vi&n Toadn hoc (Mathematical Institute) in
July, 1978, The purpose of the book is the same as the purpose of
the talks: to make certain recent applications of p-adic analysis
to number theory accessible to graduate students and researchers in
related fields. The emphasis is on new results and conjectures, or
new interpretations of earlier results, which have come to light in
the past couple of years and which indicate intriguing and as yet
imperfectly understood new connections between algebraic number

theory, algebraic geometry, and p-adic analysis,

I occasionally state without proof or assume some familiarity
with facts or techniques of other fields: algebraic geometry
(Chapter III), algebraic number theory (Chapter IV), analysis (the
Appendix). But I include down-to-earth examples and words of
motivation whenever possible, so that even a reader with little

background in these areas should be able to see what's going on.

Chapter I contains the basic information about p-adic numbers
and p-adic analysis needed for what follows. Chapter II describes
the construction and properties of p-adic Dirichlet L-functions,
including Leopoldt's formula for the value at 1, using the approach
of p-adic integration. The p-adic gamma function and log gamma
function are introduced, their properties are developed and compared
with the identities satisfied by the classical gamma function, and
two formulas relating them to the p-adic L-functions Lp(s,x) are

proved. The first formula--expressing L;(O,x) in terms of special
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values of log gamma--will be used later (Chapter IV) in the discus-
sion of Gross' p-adic regulator. The other formula--a p-adic Stir-
ling series for log gamma near infinity--will be a key motivating
example for the p-adic Stieltjes transform, discussed in the Appen-
dix.

Chapter III is devoted primarily to proving a p-adic formula
for Gauss sums, which expresses them essentially as values of the
p-adic gamma function. The approach emphasizes the analogy with
the complex-analytic periods of differentials on certain special
curves, and uses some algebraic geometry. The reader who is inter-
ested in a treatment that is more "elementary" and self-contained

(but more computational rather than geometric) 1is referred to [62].

Chapter IV discusses two different types of p-adic regulators.
One, due to Leopoldt, is connected with the behavior of LP(S’X) at
s=1; the other, due to Gross, is connected with the behavior at
s=0. Conjectures describing these connections between regulators
and L-functions are explained and compared to the classical case.
The conjectures are proved in the case of a one-dimensional char-
acter ¥ with base field Q (the "abelian over Q" case). The
proof of Gross' conjecture in this case combines the formula for
L;(O,x) in Chapter II and the p-adic formula for Gauss sums in
Chapter III, together with a p-adic version of the linear indepen-
dence over Q of logarithms of algebraic numbers (Baker's theorem).

This proof provides the culmination of the main part of the book.

The Appendix concerns some general constructions in p-adic
analysis: the Stieltjes transform and the Shnirelman integral., I
first use the Stieltjes transform to highlight the analogy between
the p-adic and classical log gamma functions. I then give a com—
plete account of M. M. Vishik's p-adic spectral theorem., This
material has been relegated to the Appendix because it has not yet
led to new number theoretic or algebra-geometric facts, perhaps

because Vishik's theory is not very well known.

I would like to thank N, M. Katz, whose Spring 1978 lectures at
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Princeton provided the explanations of the algebraic geometry and
p-adic cohomology given in Chapter III; R. Greenberg, whose seminar
talks at the University of Washington in October 1979 and whose
comments on the manuscript were of great help in writing Chapter IV;
B. H. Gross, whose preprint [35] and correspondence were the basis
for the second half of Chapter IV; and M. M. Vishik, whose preprint
[95] is given in modified form in §83-4 of the Appendix.

I am also grateful to Ju. I. Manin and A, A, Kirillov for the
stimulation provided by their seminars on Diophantine geometry and
p-adic analysis during my stays in Moscow in 1974-75 and in Spring
1978; and to the Vietnamese mathematicians, in particular Lé-van-
Thiém, Ha-huy-Khodi, Vwo ng-ngoc-Chéu and Dg-nggc-Dgép, for their
hospitality, which contributed to a fruitful and enjoyable visit to

Hanoi.

Seattle Neal Koblitz
April 1980

FRONTISPIECE: Artist's conception of the construction of the
2-adic number system as an inverse limit. By Professor A. T,
Fomenko of Moscow State University.



I. BASICS

In some places in this chapter detailed proofs and computations
are omitted, in order not to bore the reader before we get to the
main subject matter. These details are readily available (see, for

example, [53]).

1. History (very brief)

Kummer 1850- introduced p-adic numbers and developed
and Hensel...... 1900 their basic properties
+...ta x2 =0

1 n n

(a, rational) is solvable in the rational
numibers if and only if it is solvable in
the reals and in the p-adic numbers for
all primes p (see [13,84])

Tate...veveeasas 1950 Fourier analysis on p-adic groups; pointed
toward interrelations between p-adic num-
bers and L-~functions and representation
theory (see [59])

Minkowski....... 1884 proved: an equation alx2

Dworkes.ceeseaes 1960 used p-adic analysis to prove rationality
of the zeta-function of an algebraic vari-
ety defined over a finite field, part of
the Weil conjectures (see [25,53])

(Kummer......... 1851 congruences for Bernoulli numbers—but he
approached them in an ad hoc way, without
p-adic numbers)

Kubota-Leopoldt 1964 interpretation of Kummer congruences for
Bernoulli numbers using p-adic zeta-function

Iwasawa, Serre, past p-adic theories for many arithmetically

Mazur, Manin, 15 interesting functions

Katz, others years



Dwork, past p-adic differential equations, p-adic
Grothendieck and 15 cohomology, crystals
thelr students years

2. Basic concepts

Let p be a prime number, fixed once and for all. The "p-adic
numbers" are all expressions of the form

ampm + am+1pm+1 + am+2pm+2 + s
where the a, e {0,1,2,...,p-1} are digits, and m 1is any
integer. These expressions form a field (+ and x are defined
in the obvious way), which contains the nonnegative integers

n=aj;+tap+t...+ arpr ("n written to the base p"),
and hence contains the field of rational numbers Q. For example,

-1 = (p-1) + (p-1)p + (p-1)p + .03

~a )

m= a0+an+a0p + 0y
as 1s readily seen by adding 1 to the first expression on the
right and multiplying the second expression on the right by 1l-p.

An equivalent way to define the field Qp of p-~adic numbers
is as the completion of Q wunder the "p-adic metric" determined
by the norm | |p: Q—>nonnegative real numbers, defined by

ord b - ord_a
=p P P fol =0,

2
b

P
where ordp of a nonzero integer is the highest power of p
dividing it. Under this norm, numbers highly divisible by p are
"small", while numbers with p in the denominator are "large".
For example, |zso|5 = 1/125, |1/250|S = 125. Clearly, | lp
is multiplicative, because ordp behaves like log:

ord_(xy) = ord x + ordpy.

Also note that [n P <1 for n an integer.

It is not hard to verify that the completion of Q under the

p-adic metric can be identified with the set Qp of "p-adic
expansions" ampm +a_ p™l 4+ ... . The norm |1

m+1p is easy to



evaluate on an element of Q written in its p-adic expansion:

P
- m m+l _ W
if x = ap +a .p + ... with a # 0, then |x|p =p .

Thus, Qp is obtained from | |p in the same way as the real
number field R 1is obtailned from the usual absolute value | [:
as the completion of Q. In fact, a theorem of Ostrowski (see
3] or [53]) says that any norm on Q is equivalent to the usual
| | orto | |p for some p. Hence, together with R, the

various Qp make up all possible completions of Q:
R Q Q@ Qg *** Q
D
SRS
Q

P

Often, a situation can be studied more easily over R and Qp
than over Q; and then the information obtained can be put
together to conclude something about the situation over Q. For
example, one can readily show that a rational number has a square
root in Q if and only if it has a square root in R and for all
p has a square root in Qp. This assertion is a special case of
the Hasse-Minkowski theorem (see §1 above).

In addition to multiplicativity, the other basic property of a
norm | | on a field is the "triangle inequality" [x + y| <
|x|] + |y], so named because in the case of the complex numbers
C 1t says that in the complex plane one side of a triangle is
less than or equal to the sum of the other two sides. The norm

| | on Q satisfies a stronger inequality:

P
[x + y|p < max ( |x|p, |y|p). 2.1)
This is obvious if we recall how to evaluate |x|p for x =
ampm + am+1pm+1 + ... (see above). A norm that satisfies (2.1)

is called "non-Archimedean". Inequality (2.1) is sometimes called
the "isosceles triangle principle", because it immediately implies
that, among the three "sides" |x|p, |y|p and |x+y|p, at least
two must be equal. Thus, in non-Archimedean geometry "all triangles

are 1lsosceles".



Here is another strange consequence of (2.1). In a field with
a non-Archimedean norm | |p’ define
D (r) = {x| |x-a|p < r} ("closed" disc of radius

r centered at a)
(2.2)

Da(r-) = {x] |x-a|p < r} ("open" disc of radius
r centered at a).

Then if b € Da(r), it follows from (2.1) that Db(r) - Da(r).
(Also, if b € Da(r_), then Db(r-) = Da(r—).) Thus, any point in
a disc is its center! 1In particular, any point in a disc (or in
its complement) has a neighborhood completely contained in the disc
(resp., in its complement). Therefore, any disc is both open and
closed in the topological sense. That is why the words "open" and
"closed" in (2.2) are in quotation marks; these words are used
only by analogy with classical geometry, and one should not be
misled by them.

In Qp, it is not hard to see that all discs of finite radius
are compact. The most important such disc is

2
Zp &g Do = x| |x|p <1} ={x=a + a;p +a;p” + coo ke

0
Zp is a ring, whose elements are called p-adic "integers". Zp
is the closure of the ordinary integers Z in Qp. In Qp, the
other discs centered at 0 are

m+l

Pz = {x-ampm+a P + ...} for me Z.

P ol
Z is a local ring, i.e., it has a unique maximal ideal pr, and
its residue field Zp/pZp is the field of p elements Fp = Z/pZ.
The set of invertible elements in the ring Zp is
2k =z ~pz = {x| [x] =1}
pdef “p T P% 1,
2
= {x= ag+ap+ap’ + ... | ag # 0}.
There are p-1 numbers in Z; which play a special role:
the (p-1)~th roots of one. For each possible choice of a, =

0
1, 2,..., p~1l, there is a unique such root whose first digit is

ags we denote 1t w(ao) and call it the Teichmuller representative

of ay- For example, for p =5



w(l) =1

@(2) = 2 4 1+5 + 2052 + 1.5% 4+ 3.5% & .

W3) = 3+ 325 + 2052 + 357 4 1e5% 4 L = —w(2)

O(4) = & + 45 + 4057 + 4053 4 4e5h 4 | = 1,

Except for w(£l), the Teichmiiller representatives are irrational,
so their p-adic digits do not repeat, and can be expected to be
just as random as, say, the decimal digits in vZ.

If x= a, + ap + ... € 2%, we set w(x) = w(ao). Any
ord X
- p ¢
X € Qp can be written as x = p Xq for Xq € Zp. Then we
write
ord_x
X = p P w(xo) <X5”»

where <x4> dof xO/w(xo) is in 1+ pr, the set of x such
that |x—1|p < 1.

The ring Zp is the inverse limit of the rings Z/an with
respect to the map "reduction mod p™" from Z/p™Z to 2/p"Z for
m 2 n. This suggests that, i1f we want to solve an equation f(x) =
0 for x € Z_, we should first solve it in Z/pZ = F_, then in
Z/pZZ, Z/pSZ, and so on, An important condition under which a
solution in Fp can be "lifted" to a solution in Zp is given by

Hensel's Lemma. Suppose that f(x) € Zp[x], f(ao) 2 0 (mod p),
and f'(ao) # 0 (mod p) (here f' 1is the formal derivative of the
+ ... €2

polynomial f). Then there exists a unique x = a
such that f£(x) = 0.

0

Hensel's Lemma is proved by Newton's method for approximating
roots (see [59,53]).

For example, when f(x) = xP1 - 1,
satisfies f(ap) = 0 (mod p), while f£'(ap) = (p~1)ab > # 0

(mod p); so Hensel's Lemma tells us that a, has a unique

any a, € {1,...,p-1}

Teichmiiller representative w(ao) € Z;.

Unlike in the case of R, whose algebraic closure C 1is only

a quadratic extension, Qp has algebraic extensions of arbitrary

10



degree; 1its algebraic closure 6 has infinite degree over Qp.
Can | |p be extended from Qp to 6;? Well, suppose o is
algebraic over Qp and satisfies the minimal polynomial f£(x) =
xd + a\d_lxd-1 + .00+ ay It is not hard to show that a multi-
plicative norm on 6; extending | |p would have to be unique.
So the value of this extended | |p on o and each of its conju-
gates would be the same (because we can also get an extension of

| |p by composing our first extension of | |p with a field
.automorphism of 6 taking o to the conjugate). Therefore, the
only possible value for |ot|p is the d-th root of |a0|p. It

turns out that this definition

d/
|a|P - INQp(a)/Qp(a)lp (N denotes field norm)

does in fact give a norm on 6;. But the fact that this | |p
satisfies the triangle inequality is not trivial to prove. The

extension of | | to 6; is perhaps the hardest of the basic

P
facts about p-adic numbers; for two different proofs, see [13]

and [53].

We now define the ordp function on 6; by ordpa = -logp|a|p,
s0 as to agree with the earlier ordp on Qp. (Here logp is the
ordinary "log to base p", not to be confused with a p-adic
logarithm which we shall introduce shortly.) Clearly, if [K:Qp] =
d, then the image of K under or:dp is an additive subgroup of
lZ, and so orde = 22 for some e dividing d. This positive

d
integer e 1s called the index of ramification of K. There are

two extremes:

(1) e=1. Then K 1is called unramified. An example is
K= Qp(vT) for N not divisible by p. In fact, it can be shown
that every unramified K 1is contained in some cyclotomic field,

so the "unramified closure" of Qp is Q;nr = L_JQP(§T).
pIN
(2) e =4d. Then K 1is called totally ramified. An example
is K =Q (§) for E#1 a p-th root of one, i.e., a root of
1 +xP~2 4 . 4+ x+1=0. Toshow that K is totally rami-

11



fied, it suffices to find A € K such that ordpA = 1/(p-1). Let

A =£-1. Since A satisfies: 0 = [(xtl1)P-1] / [(xtl)-1] = xP1 &

pxp-Z + %p(p*l)XP-S + ... +p, it follows that ordpA = S%I ord p
= 1/(p-1). More generally, if £ is a primitive p"-th root of ome,
then QP(E) is totally ramified of degree p“—pn_l, and
1
ord (€ - 1) = ———. (2.3)
P -P

The set of all totally ramified extensions is harder to describe
than the set of all unramified extensions. And, of course, "most"
extensions are neither unramified nor totally ramified. 1In the

general case we write d = e°f.

The significance of f is as follows. If K 1is any field with
a non-Archimedean norm | | , we let
O = {x € K| |x|p <1}, M o=ixe K| |x|p < 1}

OK is called the "ring of integers" of K, and MK is the unique
maximal ideal in OK‘ If K 1is algebraic over Qp, then the resi-
due field OK/MK will be algebraic over Fp. If K has degree d
and ramification index e, then this residue field has degree f =

d/e over Fp (see [59]).

Let us return to the casé of K unramified, of degree d = f.
Let q = pf, so that OK/MK is the field of q elements Fq.
Theh, using Hensel's Lemma (generalized to OK)’ we see that every
nonzeto element ay € F_ has a unique Teichmuller representative

w(ao) e K such that w(ao)q_l =1 and w(ao) mod MK is a If

0°
a, generates Fq as an extension of Fp, then K = Qp(w(ao)).
These Teichmiller representatives are a natural choice of "digits"

in K: avery x ¢ K can be written uniquely as the limit of a sum

- i
x ziim a;p’, where a ¢ {u)(a)}a eF
(we agree to let ®(0) = 0). Even in Qp it is sometimes con-

venient to choose 0, w(l), w(2),..., w(p-1) as digits instead of

0, 1, 2,..., p-1.

12



Since the complex number field C 1is a finite dimensional
R-vector space, it is complete under the extension of | | to C.
However, ap turns out not to be complete under | |p. For exam-

ple, the convergent infinite sum Exipi, where the x, are a

i
sequence of roots of one of increasing degree, in genaral is not
algebraic over Qp. Thus, in order to do analysis, we must take
a larger field than 6?. We denote the completion of 6; by Qp:
Qp = 6; (" means completion with respect to | |p)°

It is not hard to see that Qp is algebraically closed, as

well as complete, that OQ /MQ = Fp, and that ordpQp = Q. Some-

P
times Qp is denoted C in order to emphasize the analogy with

the complex numbers (i.e., both are the smallest extension field of
Q that is both algebraically closed and complete in the respective
metric). But in some respects §_ 1is more complicated. For

example, it is a much bigger extension of Qp than C 1is over R
(in fact, Qp has uncountable transcendance degree over Qp), and

it is easy to see that Qp is not locally compact.

3. Power series

An infinite sum Zai has a limit if zN<i<M a; is small for
large N, M > N, Because of the 1sosce1es_fr1angle principle

(2.1), in Qp this occurs if and anly if a,~»0, i.e., |4

i 1|p

—>» 0, or equivalently, ordpai-—*-w. Thus, the question of con-

vergence or divergence of a power series Zaix1 depends only on
|x|p, not on the precise value of x. There is no “"conditional
convergence". Thus, every infinite series Zaix1 has a radius of

convergence r such that one of the following holds:

00
:€:1=0 aix1 converges < x € D(xr") (45¢ Do(r_), see (2.2))

or

(-]
Zi=0 aixi converges < x € D(r) a2 Do)

An example of the first alternative is Txl (where r = 1); an

13



1-1

. i
example of the second is the derivative Eplxp of IxP (here

also r = 1).

An important example is the series & = Exilil. To determine

its radius of convergence, we must find ord_(i!). If i is a

power of p, it is easy to see that ordp(p“!) = pn—l + p“_2 +

.o +p+1 = (i-1)/(p-1). More generally, if we write the posi-
tive integer 1 to the base p: 1 = Eaipi, and let S1 =1 a;
denote the sum of its digits, then
i- S1
ord_(i!) = . (3.1)
P p-1

Since 1 < S1 < (p-l)(logpi + 1), 1t follows that asymptotically

ordp(i!) ~ and so

i
p-1’

i 1
or p(x /11) & or b, -1

@xeD(é-), Y=P;<'/; > 1,
Thus, X converges in a disc smaller than the unit disc. In the
classical case the 1! in the denominator makes e converge
everywhere, but in | |p it has a harmful effect on convergence.
The poor convergence of X causes much of p-adic analysis, e.g.,
differential equations, to involve subtleties which are absent in

complex analysis.

To obtain a series convergent in D(17) instead of D(é_), we
can replace X by e"x, where T (not to be confused with the
real number T = 3.14,..) 1is any element of Qp such that ordpw
= 1/(p-1). The best choice of m 1is a (p-1)-th root of -p, for

reasons that will become clear later.
We can analyze more closely why X converges so poorly if we

use the formal power series identity

&= 17, @-MP®M o qrxll, (3.2)

n=1

where the Mobius function U is defined by

14



0 if there is a prime whose square divides n;
Hm) =
(-1)k if n 1is a product of k distinct primes.
The identity (3.2) is easily proved by taking log of both sides
and using the fact that zd|n pu(d) =1 if n=1 and 0 other-

wise.

Most of the terms in (3.2) -- those for which p)n —- have

fairly good convergence, because the binomial series

a+n* = 2(?) Yi, (:) - u(a-l)-;; (a-i+1)

has coefficients

o
€z . .
(1) € Zp for «a Zp (3.3)

(Namely, this is trivial for o a positive integer; then use the
fact that the positive integers are dense in Zp.) Thus, for

pln, :[I(l—x“)-l'l(“)/“l € Zp[[x]] and so converges for |x|p <1,
The bad convergence of (3.2) comes from those n which are divis-
ible by p. So, to get better convergence, we can define the
"Artin-Hasse exponential” . pz ) p3 s
Ep(x) - [1 (l_xn)-u(n)/n - X +x/p+x/p"+x/p +...’
pln
where the last equality of formal power series is proved in the
same waz as (3.2). Then Ep(x) is in Zp[[x]], and so converges
in D(1).

p-1

If we make the change of variables Ep(wx), where T = -p,
the first two terms in the exponent are m(x - xP).  The expression
x - xP plays a key role in much of p-adic analysis, since in a

field of characteristic p
x € the prime field Fp & x-«f =05

also recall that the Teichmiller representatives {u)(a)}aeF are

P
solutions of this equation in Qp. m 1is chosen to be a (p-1)-th
root of -p precisely so that the fitst two terms in the exponent

for Ep(wx) become a multiple of x - .
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Since

i
P P i
T(x-x") _ -(mx)" /p
e = Ep(wx) ﬂm e N (3.4)
T (x-xP)

the convergence of e is determined by the worst convergence
that occurs on the right, E (mx) converges on D(Y ) (recall
Y = pl/(P_l)), and it is easy to compgte that the worst series is

the first one in the product, exp (-mP xP /p ), which gonverges
for ord x > -(p-l)/p . Thus, 1f we let Yy = p(P_l)/p > 1, it

T(x=-x%' )

follows that e converges on D(Yl_), a disc strictly

bigger than D(1).

_yP
Thus, the -xf in ew(x %) is a "correction" which improves
the convergence of e"®. We can see how this works if we look at
x m(x-xF)

m
the expansions of e and e out to the xp-term, the

first term where the two series differ. In the expansion X =
z (wx)ili!, the xP-term is the first ome in which 1/i! & Zp,

i.e., the first term containing a p in the denominator. Thus,

|‘Np/p!|p = |-1r/(p-1)!|p = |1r|p (the first equality because a1
_P
= —p). But the coefficient of xP in eﬂ(x x7) is
P
™
U = - - = —1)1
=T m(-p/p! - 1) (p 1), 1+ (p-1)1).

A simple fact of elementary number theory (Wilson's theorem) says:
(p-1)! = -1 (mod p). Hence, the p-adic norm of the coefficient of

—vP
TG g bounded by |pm| |wp| Thus, the correc-

xp in e
tion term -mx’ has the effect of canceling the p 1in the denom-
inator of (mx)P/p!.

—xP
We denote E“(x) - eﬂ(x x7)

(not to be confused with Ep(x)).
Note that E (x) must first be expanded as a power series and then
evaluated., If |x|p < 1, the result will be the same as if we
first substituted x in 7(x-xP) and then took the exponential.
But if |x|_ > 1, that exponential will not converge unless
|x—xp|p < 1l, and even in the latter case will in general give

the wrong value; for example, E“(l) $#1= e0 (see 8III.5).

16



Another important series is
i+1
log(l + x) = zw S-_l—)——xi, (3.5)
= 1 _
which is easily seen to converge on D(1 ). It has better conver-

gence than et Since the identity

log(xy) = logx + logy (3.6)
holds as a formal power series identity, i.e., Z(-l)1+1x1/1 +
i+l 1 i+l

T DN = 5 DM ey l/e in Qlix,yll, it follows
that (3.6) holds in Q_ as long as |x-1|p <1 and |y-1|p < 1.
In particular, since £-1|p <1 for & any pn-th root of one

(see 82), we can apply (3.6) to conclude that 1log § = 0.

The p-adic logarithm has a natural extension to Q; = Qp-{O},
which we shall denote 1np (so as not to confuse it with the
classical log-to-the-base-p; however, in the literature logp

is normally used rather than lnp).

Proposition. There exists a unique function lnp: Q;—>Q

P
such that

(1) 1n (1 + x) is given by the series (3.5) if |x|p < 1;
(2) (3.6) holds for all x, y € Q;;
(3 lnp(p) = 0.

The third condition is a normalization, which is necessary be-
cause, as mentioned before, ordp behaves like a logarithm. Thus,
if lnp is any function satisfying (1) and (2), then for any
constant ¢ € Qp the function lnp + c'ordp also satisfies (1)
and (2).

I won't prove this proposition, but will discuss concretely how
one computes a logarithm. First, for every 2 € Q, choose “pm/n"
to be any root of X" - pm = 0. Now suppose we want to find 1n x

/n

for some nonzero x € Qp. First write x = pm X where m/n =

0’
ord x. Since |x0|p =1, its reduction modulo M, is a nonzero
element ;b € Fp. Let w(;b) be the Teichmiiller representative of

;b. Then

17



ord x  _
x = p P w(xo) <x.>, where |<x0> - 1|p < 1.

Since lnpp = 0, and (3.6) implies that lnp(any root of 1) = 0,
we have
i+l i
lnpx 1np<x0> = :Ek-l) (<xg> = D7/4.

For example,

_l_) -
1‘“5(250 = Ing
z(-l)1+1 (35 + 352 + 0:5% 4 4e5% + )i/,

(2+ 105 + 2052 4 1053 + 3.5% + )
7

Note that a function such as ordp, which is locally constant
on Q; (i.e., for every a € Q* there exists r such that ordpx
= ordpa for x € Da(r)) but is not constant, could not exist on
C*, For this reason, the theory of analytic continuation is more
complicated on Q;. Unlike the classical log, lnp is not ob-
tained by "analytic continuation” of the series (3.5); any of the
functions lnp + c°ordp would also be locally analytic and agree
with (3.5) on D, (1.

There is a notion of p-adic global analyticity, due to Krasner
[57], such that two globally analytic functions which agree, say,
on a disc, must agree everywhere. Namely, let D ¢ Qp be a so-
called "quasi-connected" set, the most important examples of which
are discs from which finitely many smaller discs and/or compact
subsets have been removed. Then a function f: D-*-Qp is said to
be Krasner analytic if D 1s a union of open sets Di’ D1 c Di+1’
such that for each i, f|D is a uniform limit of rational func-
tions having no poles in Di.
Q;. Later we shall see examples of interesting Krasner analytic

1np is not Krasner analytic on

functions. For example, the second derivative of the p-adic log
gamma function turns out to be Krasner analytic on the complement

of Z: D=Q -2 see p. 134).
P P P ( P

A final remark about lnp: it has the expected derivative i,

since 1lim [(In (x + €) - 1n x)/e] = 1lim 1 In (1 + E), and
e P P ep x

lnp(l + ;) is given by the usual series as soon as |e|p < |x|p.
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4. Newton polygons
a. Classical case

Por £(X,Y) = Eaijxin € RIX,Y], let M,

of the following set of points in the (i,j)-plane: {(1,3)| a1j¢o}.

be the convex hull

Mf is called the Newton polygon of f. If two polynomials f, g
€ R[X,Y] have no common factors, then the two curves determined by
f and g intersect in a finite number N of points (counting
multiplicity): {(x,y)| £(x,y) = g(x,y) = 0}. Let M+ M, =
{z=x+y|xce M, y € Mg}. Then it can be shown that

N < area(M; + Mg) - area(M;) - area(Mg).

b. The p-adic case: polynomials

d f
of f is defined to be the convex hull of the points (i, ordpai)

Let f(x) = a3 +... +a xd € Qp[x]. The Newton polygon M,

(where we agree to take orde = +0), 1i.e., Mf is the polygonal

line obtained by rotating a
(d, ordpad)

vertical line through (0, ordpao)
counterclockwise until it bends ,/J/,
around various points (i, ordpai), I ‘\\\'/,/'

and eventually reaches the point

, ordpad). This is similar to the classical case (where we take

- 3 -
a; Zj ain and ordYa1 the least j for which a; # 0),

except that we only take the lower part of the convex hull.

3

It is not hard to prove the following

Proposition. If a segment of M; has slope X and horizontal

length N (i.e., it extends from (i, ordpai) to

(14N, AN + ordpai)), then f has precisely N roots £, with
ordpr1 = =X (counting multiplicity).

Examples. (1) The Eisenstein irreducibility criterion: if
f(x) = ag+ ..+ a\d_lxd‘1 +xd e Q[x], and if there exists a prime
p such that ordpai 21 for 0<1i<d and ordpao =1, then f

is irreducible over Q. 1In fact, using the Newton polygon M we

f’
can quickly see that f 1s even irreducible over Qp. Namely, the
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conditions on ord a; imply that Mf consists of the line segment
from (0,1) to (d,0). Hence f has d roots all of ordinal
If f factored over Qp, each root r wouid have degree d' <
over , and hence we would have ordpr € 372 Thus, f 1s
irreducible.

1
3
d

(2) Later we'll want to study the curve yp -y = xd. If this
curve is considered over a field of characteristic p, there are
p obvious automorphisms XX, yl—>y+§, ae€ Fp. Suppose we
want to find similar automorphisms x+~»x, yr>y+a when the curve
is considered over Qp. For example, let us fix y € Q@ and look
for a e Qp such that sending yr>y+a "lifts" the automorphism
y>y+l 1in the sense that a =1 + z with |z|p <1, 1i.e.,

a1l (mod MQ ). It is convenient to suppose that |y|p <Y, where

P
YA S N

Y= We must choose z so that
(y+1+z)p- (y+1l+2z) = yp-y,

or, if we write this as a polynomial in <z,
2P + l;_;i (l;_) (y+1)1 P71y (p(y+1)p_1-1)z +

+ [+DP - yP - 1] =o0.
The constant term a, = (y+1)p - yp -1= I (p)yi satisfies
0 1<i<p \i

ordpa > 1+ min(0, (p~l)ord y), which is greater than zero, since

0
we have assumed that ordpy > -1/(p-1). On the other hand, ordpal
= or:dpa\p =0 and ordpai
polygon of this polynomial in 4\

z 1s as shown in the diagram

>0 for 1 <1< p. Hence, the Newton

to the right. The only nonzero

slope is the first little seg-~

ment, with slope A = -ordpa Thus, there is exactly one root =z

with |z|p <1, in fact, wigh ordpz =-)= ordpao. This root =z
gives the unique lifting to Qp of the automorphism yM>y+l in
characteristic p. The other p-1 roots 2z have |z|p =1, and
the corresponding maps yM>y+l+z 1lift the other automorphisms

yr>yta, ae Foe
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c. The p-adic case: power series

The Newton polygon Mg for a power series f(x) = Eaix1

€ Qp[[x]] is defined just as for polynomials, except that now it
extends infinitely far to the right. Also, it is possible for the
Newton polygon to include an infinitely long segment without any
points (i, ordpai) far to the right. For example, the power

-1 pd
j-1.p

series 1+ L has simply the x-semiaxis as its Newton

P
izl
polygon, although ordpa1 >0 for 1> p. Here is the case p = 2:

The following theorem is the p-adic analog of the Welerstrass

Preparation Theorem.

Theorem, Let f£(x) =a x" + ... € Q [[x]], a #0, bea
Let % . - be a

power series which converges on D(px). Let (N, ordpaN) be the
£ with slope < A, Aif
this N is finite. Otherwise, there will be a last infinitely

right endpoint of the last segment of M

long segment of slope A and only finitely many points (i, ordpai)
on that segment. In that case let N be the last such 1 (for

example, in the above illustration N = 2). Then there exists a

unique polynomial h(x) of the form b x"+b xm+1 + ... +b xN
—_—  m o+l N

with bm =a and a unique power series g(x) which converges and

is nonzero on D(px), such that

h(x)
g(x)

In addition, Mh coincides with Mf as far as the point

£(x) on DGM.

(N, ordpaN).

Corollary 1. Within the region of convergence of f, the New-

ton polygon determines ordp of the zeros of f in the same way
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as for polynomials.

Corollary 2. A power series which converges everywhere and has

no zeros is a constant.

For proofs of these facts, see, for example, [53].

-1 pd
Examples. (1) The power series 1 + Ej>1 pj 1xp , which con-
verges on D(l), has precisely p zeros, all with | |p =1,
(2) For the log series f(x) = L (-1)1+1 xili, M, is the

polygonal line connecting the points (pj,-j), i=0,1, 2, ««. .
The picture for p = 2 1is given below. We may conclude that in

Dl(l_) the function lnp vanishes at points 1 + x for exactly
-1
Jo_ pj

p values of x with ordinal 1/(pj - pj-l). These x's
are precisely x =& -1 for & a primitive pj-th root of one

(see (2.3)).

Remark. Some specialists prefer another definition of the New-
ton polygon. Instead of the points (i, ordpai), they look at the
lines ~Jli: y = 1ix + ordpai with slope 1 and y-intercept ordpai.
Then Mf is defined as the graph of the function min1 Ri(x). The
x-coordinates of the points of intersection of the 21 which appear
in Mf give ord_ of the zeros, and the diffefence between the
slopes 1 of successive 21 which appear~in Mf give the number
of zeros with given ord_. For example, Mf for the log series
f(x) = I (-1)i+1 x1/1 is shown in the drawing on the next page.
It somewhat resembles the usual graph of log, especially near the
y-axis. This type of Newton polygon was used in Ha-huy-Khodi's
thesis [39], which contains a detailed discussion of such Newton

polygons, as well as a new generalization of Newton polygons
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("Newton sequences") which can be used for more refined investiga-

tions of power series.
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II. p-ADIC C~FUNCTIONS, L-FUNCTIONS, AND I'-FUNCTIONS

1. Dirichlet L-series

We leave p-adics for a moment to review the basic facts about
Dirichlet L-series (see [13,41]). Let f: Z=»C be a periodic
function with period d: f(x+d) = f£(x). Then we define

L(s,f) = z:ﬂ f@) n°

for Re 8 > 1, and extend by analytic continuation to other s € C.

The generalized Bernoulli numbers are

a-1 at
B ;= klvcoefficient of t° in 2 f(;‘zA. (1.1)
s a=0 e -1
It can be shown [41] that for k a positive integer
B,
Lk, = - ol (1.2)

For example, for the Riemann zeta function Z(s) = L(s,l) (where
1 denotes the constant functior 1, having period 1)

N B, = k!ecoefficient of tk in t .
k k FUIY

tQ-k) = -1 B

When f = X 1s a character, i.e., a homomorphism YX: (2/d2)*
——p-C* from the multiplicative group of integers mod d (where X
is extended by X(n) = 0 for all n having a common factor with

d), the L-series equals the following "Euler product" if Re s > 1:

L(s,x) = ﬂ( -wfl, (1.3)

e
where the product is taken over all primes &.

L-functions occur in many situations in number theory. To give
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a simple example, the class number h of an imaginary quadratic

field Q(v=d) of discriminant -d is given by

d-1
. wd !lz
h 7 3X) = - 73 Loa=l ® x(a),

where w =2, 4, or 6 is the number of roots of unity in
Q(/=d), and x: (Z/dZ)*—>{*1} 1is the Legendre symbol (quadratic
residue symbol). By the way, no elementary proof (not using the

Dirichlet formula h = -% L a X(a) ) 1is known for the nonvanishing
of the simple sum I a x(a). Later (Chapter IV) we shall study
generalizations and p-adic analogs of the formula L(1,x) =

2rh/wvd.

We shall also want to consider "twisted" L-functions. Let r
be a positive integer, and let € # 1 be any nontrivial r-th root

of one. Let z':l = €, Then let

L(s,f,z) = 2n=1 £(n) 2" n °,
Since the function m—»f(n)zrl has period dr, this is a special
case of the L-series considered above. In particular, if we replace
k by k+l and f(a) by zaf(a) in (1.1) and (1.2), we obtain:

2 f(a)eat bdtza+bd

0<asd - er

0<b<r

L(-k,f,z) = k!*coefficient of tk in

a at
= k!+coefficient of tk in f_g_a;)_z_%_

0<a<d 1l-ee

(1.4)

We now proceed to the p—adic theory.

2. p-adic measures

Let d be a fixed positive integer, and let X = lim Z/deZ,
N
where the map from Z/dpMZ to Z/deZ for M2 N 1is reduction
mod de. In the special case d =1, X 1is simply Zp. By
a + deZp we mean the set of all x € X which map to a  under
the natural map X—VZ/deZ. Without loss of generality, we may

N
agree always to choose a so that 0 < a <dp . Note that
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X = L_J a + dZ is a disjoint union of d topological spaces
0sa<d P

isomorphic to Zp. Also,

a+ a2z = | (atbap™ + ap™*

12
0<b<p P

(disjoint union). (2.1)
It is not hard to show that any open subset which is compact

(i.e., closed, since X 1is compact) is a finite union of compact-

open sets of the form a + deZ . (Warning: Not all open sets are

compact, for example, X-{0}.)

Definition. An Qp-valued measure M on X 1is a finitely
additive bounded map from the set of compact open UCX to Qp.

If we are given the values of a function p only on the sets
a+ deZp, such a u extends to a measure on all compact-open U
if and only if these values are bounded and for all a

N p-1 N N+1
ula + dpiz ) = 2 u((atbdp) + dph iz ), (2.2)
P b=0 P
i.e., we need only check additivity for the disjoint unions (2.1).

An equivalent definition of a measure is: a bounded linear
functional fF—#j/kdu on the Qp-vector space of locally constant
functions on X (i.e., functions which are a finite linear combi-

nation of characteristic functions of compact-open sets).

A routine verification shows that, if f: X=>Q is any
continuous function, and we write f as a uniform limit of locally
constant functions fi’ then the limit of the Riemann sums j%idu
exists and depends only on f: j}du = lim j%idu. For example,

we can evaluate |fdy as the limit

j}du = lim 25 N f(a) p(a + deZ ). (2.3)
N— 0<a<dp P

Clearly, the Qp-valued measures form an Qp-vector space.
For more detailed proofs, see, for example, [53].

Remark. Much more general p-adic measures have been defined:

measures on more general types of p-adic spaces X (Mazur, Manin,
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Katz), measures which take values in spaces of modular forms (Katz)

or spaces of operators (Vishik), unbounded measures (Manin, Vishik).
Basic example. Fix =z e Qp go that € = 4 is not in

- N
Dl(l ). Then |Ep -1|p > 1 for all N. The most important case
is whan € = zd is a root of one which is not a pN-th root of one

for any N. Define

a
Z .

N
1-¢€P

N
uz(a + dp Zp) =

This gives a measure, since boundedness is ensured by stipulating

N
that P is not close to 1, and the verification of additivity

reduces to summing a geometric progression:

p-1 N, W 1 zp'l a+bdp®
- —— P
b=0 uz(a+bdp + dp Zp) o) b=0 ?
1-¢P
a p-1 N a
- z bp _ z - N,

51 2b=0 € § " M atdrz).

l1-¢ 1-¢P

An especilally simple case, considered by Osipov [78], occurs
when d =1 and z =€ 1is a (p-1)-th root of one, in which case
the denominator 1 - EPN =1-¢€ is simply a constant.

Since the space X '"brings together" 2/dZ and Z_, we have
two natural sources of continuous functions on X. (1) Any
f: Z—PQP having period d can be considered as a continuous
(in fact, locally constant) function on X by setting f£(x) = f(a)
for x e a+ de. (2) Any continuous f: Zﬁ-*'ﬂp can be pulled
back to X by means of the map from X to Zp which "forgets
mod d information" (i.e., the map which is the inverse limit of
the projections reduction mod pN: Z/deZ-ﬂPZ/pNZ).

We shall look at the following example of the second type of
continuous function on X. Let t € @ be any small fixed value
(namely, ordpt > 1/(p-1)). Then e ¥ =1 tixi/i! is a continuous

function on X; 1its value at an x € X is determined by approxi-
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mating x by a for which x ¢ a + deZp.

Now let f be a function of period d, and consider the func-
tion etxf(x) on X. We can integrate this function using (2.3)
and summing the geometric progression. We shall write duz(x) to
remind ourselves that x (and not t) 1is the variable of integra-

tion. We have:

jetxf(x) duz(x) = lim —l—N Z N e (a) 2°
N>, _ p  0Za<dp
N
-1 P -1
= 2a=0 f(a)zaeat lim lN 2. (ze':)b"'l
N P b=0
- N 4N
_ d-1 f(a)zaeat .1 -¢P edp t
= =0 ac lim .
30 1 - e Ne 1 -eP
N
Since edp t approaches 1 as N-=—>®, the limit is 1, and we
obtain
a at
x d-1 f(a)z e
je f(x) duz(x) = 2 . (2.4)
a=0 dt
1 - €e

Notice that the right side of (2.4) is the same function that
appeared in the expression for L(-k,f,z) 1in §1, except that in
(1.4) the values of z and f were complex, while in (2.4) they
are p-adic. The most important case of (1.4) occurs when f takes
algebraic values, for example, when f = yx: (Z2/dZ)*—=C* is a
character. Thus, suppose that in (1.4) both z and the values of
f are contained in a finite extension K of Q. If we imbed K
in Qp, we can identify z and f(a) simultaneously as complex

or as p-adic numbers.

To construct such an imbedding, choose any prime ideal P of
K dividing p. Introduce the "P-adic" topology on K in the same
way as the p-adic topology was introduced on Q: x € K is con~
sidered to be small if the fractional ideal (x) is divisible by
a large positive power of P. Then complete K in this topology.

Since P|(p), the resulting complete field KP contains Qp, and
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is an algebraic extension of Q . For more details, see [59]. 1In
what follows, we shall suppose that such an imbedding IP: K =-Q
has been chosen once and for all, so that any expression involving
complex numbers which all lie in K can be simultaneously viewed

as a p-adic expression.

In particular, L(-k,f,z) can be considered p-adically. Then,
comparing (2.4) with (l.4), we obtain

w k
> L-k,£,2) o7 = [RIT du ()

k=0
®© k
k t
= Ek_ofx f(x) duz(x) e
Since this holds for all t with ordpt > 1/(p-1), we can equate

coefficients and obtain
Le-ky£,2) = [0 au (0. (2.5)

As an application of (2.5), one can now study p-adically the
values at =k of the Riemann zeta function, since, if we take any

positive integer r prime to p, we have

Z Lis, L) = “'Slr'l i eln | (los gy pee).
ef=1, ef1 n=1 -1 if rfn

Thus, for d =1, X = Zp, and y defined as the sum of uE
over all € with €f = 1, € # 1, we have

(e = e [ a. 2.6)
4 -1

Remark. The relation between this | and Mazur's measures

Hy (see [53]) is that p = uMazur,a for a = 1/r.

3. p-adic interpolation

For simplicity, we first treat the case of the Riemann zeta

function, and take d =1, X = Zp. We know that the values

ti-k) = -fB = kl—l jxk'l du(x) (3.1)
ok _

are rational numbers (we have replaced k by k-1 in (2.6)). It

would be nice to find a continuous p-adic function Qp: Z;——*-Qp
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which agrees with Z on all 1-k. Since the set {1-k} 1is dense
in Zp, there can be at most one such Cp. Such a CP exists if
and only if
k1 close to k2 p-adically

= C(l-kl) close to C(l-kz) p-adically.

This is mot the case, however, and we must first modify the zeta

function.

We define a new complex analytic function by setting
-5 -
*(z) = n = (1~ (s
ORI @ -p ") &(s)

for Re s > 1 (and for other s € C by analytic continuation).
z* 1is obtained from 7 1in a similar way to how the Artin-Hasse
exponential was obtained from e* in §I.3 (see the idantity (3.2)
in Chapter I; the terms with p|n are omitted to define Ep(x)).
This procedure is often called "removing the Euler factor at p",
because
- - 1 1
() = -2 zee) = a-p O, —= = T, ——.
1-2 Pig
There is yet another way to view C*. Let us return to the
measures | . It is easy to see that there does not exist a trans-
lation-invariant (boundad) p-adic measure, i.e., a p on Zp such
that
u(a, + pNZ ) = u(a, + pNZ ) for all a,, a,.
1 P 2 P 1’ "2
However, the measures Mg on Zp (for any € * Dl(l-)) have the
closest possible property, namely:
N+1Z )
p L]

as follows trivially from the definition. This implies that for

N
at+pl = ap +
uep( P p) ue(ap + p

any continuous function £ on Z

I £0x) dug(x) = If(px) du p(x) (3.2
pr ZP

(where for U c X, f.f of course means kaIU extended by zero
i)

€

to X-1U) ). Nowlet ¢ = 1, p | r. Since raising to the p-th

power permutes r-th roots of one, we have (where we again let p =
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z e ):

[ 21 < [ -] )xk'l )
Z Zp pr

[l aweo - [ eo*! aw
Z Z
P P

a-h ,[xk_l du(x).
z

P
Dividing by rk-l, we obtain by (3.1)

— k-1
-1 jxk Lapor = a-oh ca0 = a0, G3.3)
-1y
P
Thus, removing the Euler factor is equivalent to restricting the

domain of integration from Zp to Z;.

Now suppose that two values k1 and k2 are close p-adically,

and are also in the same congruence class mod p-1, that is, sup-

pose that k, - k2 = (p-l)me, me Z, Then we compare the in-

1
tegrand in (3.3) for k1 and k2:
k,-1 N
x 1 . xkl_kZ - (xp_l)P m
kZ_l )
x

p-1 - 1 (mod p) (because aPl o 1 for a €

F;), and it is easy to see (using the binomial expansion) that
N
_\Pm

(xp 1) 1 (mod p

k-1 k,-1
Thus, x 1 and x 2

But for x € Z*, x

N+1

). (3.4)

are close together p-adically. Hence,
their integrals over the compact set Z; are also close together;

in fact, it is easy to see that
k,-1 k-1
j x 1 dp(x) = I x 2 du(x)  (mod PN+1)-
Z* Z*
P P
If we further assume that k1 £ 0 (mod p-1), and if we take r to

be a primitive (p-1)-th root of one modulo p (so that p Y r 1—1).

k k
then we have: 1/(r L - 1) = 1/(r 2 - 1) (mod pN+1). Multiplying

these two congruences and using (3.3) and (3.1), we obtain the
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Kummer congruences. If k1 s k2 (mod (p-l)pN) and (p-1)Ik1,

then
= k-1 B k-1 Pk
1 1. 2
) = 1-p

1

where both sides of the congruence are rational numbers in Zp

) =2 (mod p™Yy,

1-p m

N

(i.e., without p in the denominator).

Thus, the Kummer congruences, which were originally thought to
be merely a number theoretic curiosity, are now seen to arise
naturally from the simple fact that: 1if two functions are close
together, then their integrals over a compact set are also close

together,

We can now define the p-adic zeta function Qp(s) by letting
1-k approach s p-adically, but fixing a class modulo p-1, i.e.,
fixing ko € {0, 1,..., p-2} and only choosing k which are con-

gruent to k., (mod p-1). Thus, we define

0

Sk (s) = lim T*(1-k)
PaXg l-k>s, kZk; (mod p-1)

= lim kl xk-1 du (x)

1-k>s, kik, (mod p-1) r - 1 Z*

I S— J <> w(x)ko-l du(x),

1-s kg
<r> w(r) -1 Z;

where @ 1s the locally constant function on Z; which takes a
p-adic integer to the Teichmiiller representative of its first digit,
and as before <x> = x/w(x) = 1 (mod p). (Thus, <% 1s well
defined for p-adic s, see (3.4).) Qp is a p-adic function with

p-1 "branches" for k., =0, 1,..., p-2.

%o,k 0

0
Remark. The classical Mellin transform of a measure u =
f(x)dx 1is the function
(-]

g(s) = I x% f£(x)dx.
0

For example, the gamma function is defined as the Mellin transform
-X
of e Tdx/x:
T(s) = .{ e xs-1 dx.
0
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Thus, gp is the p-adic "Mellin-Mazur transform" of the measure

u=2=z . v = uMazur,l/r' Strangely, the p-adic T-function,
€ =1, €#1
which we shall soon study, is not any type of p-adic Mellin trans-

form, so far as we know.

4. p-adic Dirichlet L-functions

A Dirichlet character ¥x: (Z/dZ)*=—>C* takes values in a fin-
ite (cyclotomic) extension K of Q. Recall that we can consider
K to be imbedded in Qp if we choose a prime ideal P of K
dividing p and take the completion of K in the P-adic topology:
1p: KC—>QP. We shall still use the letter ¥ for 1peXs s0

X denotes either a complex or p-adic valued character.

A Dirichlet character ¥ is said to be primitive of conductor
d 1if there is no character y': (Z/d'Z)*—>C*, d' a proper
divisor of d, such that X(n) = x'(n) for all n prime to d;
equivalently, ¥ 1is primitive if it is not constant on any sub-
group {x| x =1 (mod d")} in (Z/dZ)*.

If Xy and XZ are two primitive Dirichlet characters of

conductor d1 and d respectively, then X1X2 denotes the

»
primitive Dirichlet cﬁaracter such that xlxz(n) = xl(n)xz(n)
whenever n and dle have no common factor. This is not the
same as the character nka—xl(n)xz(n), which is often imprimitive.
For example, if Xo = X1 is the conjugate character, then XXy
is identically 1, while xl(n)xz(n) =0 if g.c.d.(n,dl) > 0.
Note that the conductor of XX9 divides the least common multi-
ple of dl’ d2.
If x 1is a primitive Dirichlet character of conductor d with
values in Qp, we let Xk = xm-k, where : n—w(n) 1is the
Teichmiiller character, which has conductor p. Clearly, the con-
ductor of x, 1is pd if p ! d, and is either d or d/p if

P | d.

Let Y be a primitive Dirichlet character of conductor d. We
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use the relation (2.5) for f = x:
Lok = [ 7l xo ).

(We have replaced k by k-1 in (2.5).) We want p-adically to
interpolate this function of k, 1.e., to let k approach 1l-s ¢
Z_ and get an Qp-valued function L _(s,x,z). To do this, we must
first make two modifications: (1) "remove the Euler factor" by
restricting the integral to

X* as¢ L_J a + dpZ
0<a<dp, pla P

(X* 1is the inverse image of Z; under the "forget mod d informa-
tion" map); (2) replace x by <x> = x/w(x) in xk. We thus
define
k
Lp(l—k,x,z) acs J; <x>/x x(x) duz(x)

k-
i£ <kl xl(x) duz(x)

= iﬁ xk_1 xk(x) duz(x)

[ a0 - [ e x eoa o
X X zP

(see (3.2); the argument is the same for X as for Zp). Bring-
ing the p outside the second integral and using the above expres-
sion for L(1-k,¥,2z), we conclude that
k-1 P
Lp(l—k,x,z) = L-kx.2) - p X (PIL-k,x,27) . (4.1)

We thus have the following

Proposition. For x a character of conductor d, the continu-

ous function from Z_ to Qp

-8
Lp(s,x,z) aot i£<x> Xy (%) du_(x)

interpolates the values L(l—k,xk,z) - pk-lxk(P)L(l-k,Xk,zp)-

This proposition can be used to prove the following theorem.

Theorem (Kubota-Leopoldt [58] and Iwasawa [41]). There exists

a unique p-adic continuous (except for a pole at 1 when X is
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the trivial character) function L (s,X), s € Zp, such that
k-
L (k) = (1= P HLUk ). (4.2)

Proof. Let r > 1 be an integer prime to pd, and let zf =

1, z # 1, We first note that the ordinary classical L-function
can be recovered from the "twisted" L-function L(s,¥,z) by means
of the following relation, which follows immediately from the
definitions:

. Lsxon) = GI%@ -1 L)), sec 4.3
z =1, z#l

Using this for s = 1-k and summing (4.1) over nontrivial r-th
roots of unity =z (which are only permuted by z»zP), we have

1,0k, x,3) = (A 2" | L=k, 2)
zf=1, z#1 P z =1, z#1

= (M -1 A% " H La-k,x)
= (<o x -1 Uy ) HLAK,x) 4.6)

So we define

1
L (s,x) .= L (s,Xs2)
P def <r>1_sx(r) -1 =zf=1, 21 P
(4.5)
e f<X>-S X, (%) du(x),

<r>1_sx(r) -1 x*

where u 1s the sum of u, over all z with z =1, z# 1.

The equality (4.2) in the theorem now follows from (4.4). The
continuity of Lp(s,x) (more precisely, local analyticity) follows
because we are taking the integral of a continuous (actually,
analytic) function of s and then dividing by an expression which
can only vanish if s =1 and YX(r) = 1; r can be chosen so that
x(r) # 1 unless X 1s trivial. This concludes the proof of the

theorem,

Notice that the function Cp k (s) we defined in 83 1is pre-
cisely L (s,w 0). Also note thag, while it was necessary to choose

r 1in order to construct both Qp Kk (s) and Lp(s,x), these
L]

0
functions are in fact independent of r.
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5. Leopoldt's formula for Lp(],x).

Recall [13] the classical formula for L(1,Xx), which can be
derived by Fourier inversion on the group G = Z/dZ, Let [ be a
fixed primitive d-th root of 1, and define .,

2 -ab

fa) = 2, f®) ¢
for a function f on G. Then

1

f(b) = i z
Applying Fourier inversion (5.1) to fs(b) = anb (mod d) ™
(suppose Re s > 1) and using the definition of L(s,x) and
L(s,1,z) = L 2" o8

n
L(s,X) = Zggpeq X £.0) = 15 x) £ (@)

1

HORSE (5.1)

-8

aeG

, we have

Zj X(j)Cj Za x(a) Es(a) (where j = ab)

a
;‘ 2, X(a) L(s,1,£7,

where g = Zx(j)Cj is the Gauss sum. Letting s->l1 and noting
that L(1,1,z) = -log(l-z), we obtain

8. — -
L(l,y) = - Ex §£0<a<d x(a) log(l - ¢ 3. (5.2)

We now proceed to the p-adic case.
Theorem (Leopoldt [64]).

-
L (1, (1 > )d oéfd x(a) 1n (1 - £, (5.3)

The purpose of this section is to prove this theorem.

Note that (5.3) differs from (5.2) in two respects: the ex-
pected "removal of the Euler factor", giving the term (1-x(p)/p);
and the replacement of log by lnp. The validity of the p-adic
formula (5.3) might seem surprising at first because of the replace-
ment of log(l-C-a) by lnp(l- £™®), since the formal series for
the former does not converge p-adically, i.e., we need properties

(2) and (3) of the proposition in §I.3 in order to evaluate
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lnp(l—c_a). But the proof of Lemma 1 below shows that the same for-
mal series, along with the p-adic version of analytic continuation,

really do lie behind Leopoldt's formula, despite first impressions.

Lemma 1. If =z § D;(17) and u, is the measure on Zp given

N
by w (a+ pNZp) = z2%/(1-zP ), then

1 . _1l, -z
b duz(x) - lnp 2P °

N

Z

o

Proof. If |z|p < 1, then the left side is (the ' denotes
omission of indices divisible by p):

lim z' j—1N= 11m<zN;—j— z zpj>

Z
N—>o 0<j<pN B N> \0<j<p 0<j<PN-1 P

1 P _ P
p(lnp(l 2P - In (1-z ).

We now use analytic continuation to extend the equality from
|z|p <1 toall z ¢ Dl(l_). As we remarked at the end of 51.3,
a function is said to be Krasner analytic on the complement of
Dl(l-) if it is a uniform limit of rational functions with poles
in Dl(l_). The basic fact we need about such functions (see [57])
is that if two Krasmer analytic functions on the complement of

Dl(l-) are equal on a disc, then they are equal everywhere on the

complement of Dl(l-). Thus, 1f we show that the two sides of
Lemma 1 are each Krasner analytic functions of z on the comple-
ment of Dl(l-), then, since they are equal on the disc |z|p <1,
they must be equal for all =z 4 Dl(l_).

Note that by writing

L4-L z (p)(_z):i, if |z|p s1, z4¢Dp A

(1-2)P 1-2P 0%
1-zP
1+ 1_ z (P)(-z)'j, if |z|_ > 1,
1-27P 0G5\ P

we see that z ¢ Dl(l-) = (1-2)P/(1-2P) ¢ Dl(l-) (in fact,
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its distance from 1 is < 1/p). Hence, the right side of the
equality in the lemma is the uniform limit of the rational functions
(with poles in Dl(l-))

N k|

Ly el ((1-z)" ) 1)
P 3 1-2P ’

and the left side is the uniform limit of the rational functions

(with poles in Dl(l_))

' zj 1

0<j<pN Iy -
This concludes the proof of the lemma.

Lemma 1 will be applied when z 1s a root (but not a pN-th
root) of unity,

Remarks. 1., If =z is a (p-1)-th root of 1, the right side of
Lemma 1 becomes —(1—1/p)1np(1—z). For example, setting z = -1
gives the following p-adic limit for 1np2:

*

In 2 = - lim z @.
P 2(p-D) o 0&5pN I

2. Lemma 1 is the key step in our proof of Leopoldt's formula
for Lp(l,x). As mentioned before, the subtlety in Leopoldt's for-
mula is that 1n_ (1-z) 1s not given by the same formal series as
log(l-z), since z 1is outside the disc of convergence of
lnp(l-z). However, Lemma 1 shows that if we "correct by the
Frobenius" in the Dwork style (see, e.g., [28]), i.e., if we re-
place (1-z) by (l-z)p/(l—zp), then the resulting series is
globally analytic out to roots of unity. (We shall see further
examples of "correcting by the Frobenius", e.g., in §6.) The
effect of this step on the formula for Lp(l,x) is to bring out
the Euler factor (1 - x(p)/p), as we shall see below (in (5.4)).

The other ingredient in the proof of Leopoldt's formula is the

analog of the Fourler inversion (5.1) used in the classical case.
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Lenma 2. Suppose that X 1s a primitive Dirichlet character
mod d, ¢ 1is a fixed primitive d~th root of unity, gx = Zx(j)gj,

z# 1 is an r-th root of unity, where r 1is prime to pd, and

f: X—>Q is any continuous function. Then

fxfdu —gszua)ffdua-

0<a<d z

To prove Lemma 2, by linearity and continuity of both sides it

suffices to prove it when f 1s the characteristic function of

N
j + dp Zp, i.e., to prove that X(j)zj/(l—zdp ) =

LR P PO T . o7 o
3 Z y(a)z'’y "7/(1-zF ). But this reduces to: gxgx =d,

Proof of the theorem. We first prove an analogous formula for
the "twisted" Lp(l,x,z).

Note that, if f: X=—>Q comes from pulling back a function
(also denoted £) on Zp using the projection ("forget mod d
information") from X to 2, then we can replace X by Z_ in

f duz, where u, on Zp is defined by the same formula as on
X

N
X with d replaced by 1: uz(j + pNZp) = zj/(l—zp ). To see
this, one reduces to the case when f 1s the pull-back of the
characteristic function of j + pNZp, which 1s checked easily.

Applying Lemma 2 and the preceding remark to the function

f(x) = i'(characteristic function of X*), we obtain

L,(Lx,2) -Xf*l@duz X D x@ f—du .,

O<a<d

g _ p
Ex l In il_E:_El_ by Lemma 1
0$a<d P P1_(g7%2)P
g
--EX(-L(Pl z X@ In (- ). (5.
P 7 o<a<d

Since r > 1 1is any integer prime to pd, we may choose r
so that x(r) # 1 and then use (4.5) with s = 1 to express
Lp(l,x) in terms of the Lp(l,x,z). We obtain
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el
N,

1
LX) = 3@y -1 zr=§z#l L (Loxa2)

g — -
s {I(C )] DU N /. e
= — x(a) In_(1-7 “z)}.
d ( P ) X()-1 0S™ T el 1 P
Since the inner summation is equal to lnp(l-C-ar) - lnp(l-c-a),

the term in square brackets is immediately seen to equal

= -a
20<a<d X(a)lnp(l—C ), as desired.

This completes the proof of Leopoldt's formula.

We shall later prove one more formula for the p-adic L-function,
which relates its behavior at 0 to the p-adic gamma function.

But first we take up the p-adic gamma and log gamma functions.
6. The p-adic gamma function

First recall some properties of the classical gamma function:

(1) It is a meromorphic function on the complex plane with
poles at 0, -1, -2, -3,... .

(2) T(x#l) = xT(x), T(k) = (k-1)!

(3) TG T (l-x) sin?wx) = Zwizi i
e -1
1-2+e¢(n-1) b3

@ Ty = Un SGaDees (oD

(5) Gauss multiplication formula: for m = 1, 2,...

m-1 1_x
M rEED) o on @227 e,
h=0

for example (x = 1)

m-1
M) = m®D/2 12
"

so that if we divide these two equations we obtain

m-1

I_]h=0 F(x;h) ml-x (6.1)
I — . .
r'ex) r]::l F(%)

40



We now proceed to the p-adic theory. For simplicity, we shall
assume that p # 2. (Minor modifications are sometimes needed when

p=2.)

Proceeding naively, we would like to construct a function Fp(s)
on Zp which interpolates T (k) = Hj<k B i.e., so that T(k)
approaches Fp(s) as k runs through any sequence of positive
integers which approaches s p-adically, However, T(k) 1is
divisible by a large power of p for large k; hence Fp(s)
would have to be identically zero, which is useless. So, as in the

case of the zeta function, we must modify the values T (k).

We might improve the situation if we eliminate the j's which
are divisible by p, much as we "removed the Euler factor at p"
from Z(s) to get C*(s). Thus, suppose we take T*(k) =

Hj<k Prj i, which is an integer prime to p. Now we can find a
’

continuous function Fp on Zp which agrees with T'* on positive
integers if and only if

k, close to k, p-adically =p I‘*(kl) close to [I*(k,)
p—adi%ally,

f.e., 1f and only 1f T*(k,)/T*(k;) = 1 (mod ) with N large
whenever kz-k1 is highly divisible by p. To check this, take

1

for example k, =k, + pn. But it is easy to show that in that

2 1

case the quotient F*(kz)/F*(k is congruent

P 7 T<gciy, pl5

to -1 mod pn. (Namely, in any finite abelian group G we have

I =T .1 g apply this to G = (Z/p"2)*.) So the sign is

geG 8 = Ngop-1 85 apply (z/p g

wrong, and we have to make one final modification. We define
ra = DX 1 4, T() = lim T (K). (6.2
P <k, pl3 P k—s P

Using the generalized Wilson's theorem cited above:

I1 T -1 (mod p"),
ksi<k+p™, pl3

it is simple to check that the limit in (6.2) exists, is indepen-

dent of how k approaches s, and determines a continuous function
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on Z_  with values in Z¥*.
P P
We verify some basic properties of Fp:

T (x+l) -x 1f x € Z%;
P P

(1) T (0) =1, and =
P (0 -l Af x €pZ .

To prove the second equality, since both sides are continuous on
Zp, it suffices to prove equality for the positive integers x = k
(which are dense in Zp), and then it is obvious from (6.2). Using
(6.2) and this equality, we can compute the first few values
r()=1, @A) =-1, T (0) =1.
p() > p() s p()

(2) For x € Zp, write x = Xy * pxp, where %,
is the first digit in x, unless x € pr, in which case Xy = P.

e {1,...,p}

Then we have

T T (1-x) = (-1
p(x) p( ) (-1) N
In fact, to show that the continuous function f(x) = (-1) on(x)'

Fp(l—x) equals 1 on Zp, it suffices to show that f£f(k) =1

for positive integers k. Clearly f£f(1) = 1, and a simple verifi-
cation using property (1) shows that f(k+1)/£(k) = 1,

(3) For any positive integer m, p Y m, we have (here X

and X, are as in property (2)):

m-1
[ (e
h=0 Fp( =) o (m’(P’1)>XI. (6.3)

m~1
P IMr (%)

h=1 P

x
(Note: Since m—(p—l) = 1 (mod p), 1t follows that (m—(p—1)> '
is a well-defined function of p-adic xl.) To prove property (3),
let f£(x) be the left side and g(x) the right side of (6.3). f
and g are continuous, and f(1) = 1 = g(1). Next,

x .
£oetl) _ Ip ) I‘p(; + 1) Um if x €23
£(x) T, Getl) : I, (x/m)

1 if x € p2
P p’
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while

gGetl)
g(x) 1

* -x. s
1/m 1f x € Zp, since then (x+1)0=x0+1, (x+1)1 X3

if x e pr, since then (x+1)0 - xo—(p-l),
(x+1)l = x1+1.
This proves property (3).

We now discuss an interesting special case of property (3).

Suppose that X = pf_l is a rational number between O and 1
r

whose denominator divides p-1l. Then Xg = por, X = -1 1=
'(l—xo)/(p-l). Note that the left side f(x) of (6.3) is congruent
1-x - -

0= g ®AP) g 0. In addition,

A-x, - x,(p-1))
)Pl - (P10 7L - 1.

Thus, f£(x) 1is the (p-1)-th root of 1 congruent to m

to m

(1-x) (1~p)
mod pt

£0) = w0 QP

Now the classical expression fcl(x) which is obtained from

f(x) by replacing I‘p by T, 1is equal to ml-—x € Q(-tlvﬁ). Let
K= Q(), where & 1s a fixed primitive (p-1l)-th root of unity.

Then GalRE@LE)/K) = 2/(p-1z, with o : Elgleg? 22Lg
for a e Z/(p-1)Z. Choose a prime ideal P of K(P——l-\/mT) which
divides p. Then P determines an imbedding 1p: K(P——l-\/mT) e
Qp(‘LlVE). There exists a unique "Frobenius element"” Frob ¢
Gal(K(P——l-\/mT)/K) such that Frob(x) = «* (mod P) for every
algebraic integer x 1in K(P——l-\/n;).

We then have for x = r/(p-1)

1-x
¢ (x)l-Frob - m = (%) (1-p)
cl 1-x
Frob m

(mod P);
and, since elements of Gal(K(leﬁ)/K) multiply m]"_x by roots

of unity, we conclude that
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1-Frob) (00 ) ®.

p (fc]_(x) p-adic

This phenomenon ~- that a classical expression raised to the
1-Frob, where Frob is a p~th power type map, can be identified
with a p~adic analog of the classical expression -~ occurs in other

contexts. For example, let

E: y2 = x(x~1) (x-A), A € Z,

be an elliptic curve whose reduction

E: y2 = x(x-1) (x-A), A € Z/pZ,
is nonsingular. Further suppose that E is not "supersingular"

(which will be the case if A is not a root of the polynomial
(p-1)/2 2 _

=0 «p i)/Z) x“). It is known [67,43] that the period f
of the holomorphic differential dx/y on the Riemann surface
(torus) E, as a function of the parameter XA, satisfies the

differential equation

ALV E" + (1-D)F" - %f = o0,

whose solution bounded at zero is the hypergeometric series
LJ 2
- -1/6 n
tn = D (YT e qna
Although when we consider f(A) as a p-adic series it converges
only on D(17), it turns out that the power series O = fl—Frob
defined by ©(}) = f(k)/f(kp) converges on D(y) for some 7y > 1.

Now it is well known that the zeta-function of ;E
{(number of F ,-points on E)
— o n
Z(E/Fp) = exp 2\ T

is of the form

n

(1 - aT)(1 - pT/a)
1-T)(1-pD °

where ordpa = 0. Dwork [43] proved the following formula for a:
a = 8M).

Thus, @ can be thought of as a sort of "p~adic period".

Z(E/Fp) =

In Chapter III we shall study another analogy between classical

formulas for periods of a curve considered over C and p-adic
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formulas for the roots of the zeta function of the curve considered

over a finite field.

This concludes our discussion of elementary (easily proved)
properties of Fp. In Chapter III we shall prove an algebraicity

result for certain Fp values and products of values, for example,

r r\\d
the algebraicity of Fp(a) if d|p—1. (More precisely: (Fp(a)>

€ Q(Q/I).) But the proof of this fact uses p-adic cohomology. It
would be interesting to find an elementary proof of this algebra-

icity. After all, the assertion can be stated very simply (here we

r s
write i° 1- 1 ):
n, ntl
lim (stspt...tsp +sp ")! o € Z* 1is algebraic over Q.
e~ s+spt+...+sp P

® (s+sp+...4sp™! p

For example, the theorem in 8§III.6 will give us the following

5-adic formula:

4
0 (3 + 35+ ... + 35" + 3.571y,
I‘5 Z) = lim n
=00 G+ 35+ ...+ 3'5“)! S3 + 35+ ,.. + 35
=3+ 4w(2) =3+ 4/~ 1 ¢ Z§

(vhere V=1 = ©(2) = 2 + 15 + 2052 + 1055 + 35 4+ ... € Z) and

the following 7-adic formula:
3
n+l

3 .n .
o) - lim< b+ oo+ 407" + 407"y n)
Lt VA Y 74+...+4'7

=#‘_3 1+ 34 € z5

No elementary proof is known for either of these equalities.
7. The p-adic log gamma function

We start by describing another approach to the p-adic zeta and
L-functions, which was the original point of view of Kubota and
Leopoldt [58].

It is not hard to prove the following p-adic formula for the

45



k~th Bernoulli number (see [41]):

B, = lim p z (7.1)
= o 0<_j<p
More generally, if f: Z—-DQP has period d, and if Bk £ is
L]
defined for p-adic valued f 1in tha same way as for complex valued

f (see (1.1)), then we have

1 k
B, = lim — £3) 3. (7.2)
bf e gp" Os_;dpn

The simplest examples of (7.1) are:

n n
1im p~ z j = ump‘“L(g;ll - —% = Bj;
<"
, -n p(p"-1) (2p"-1) 1
jZPj = lim p 3 =E-B2.

This type of limit lim p © z n f(j) can be used for
n=—» 0<j<p

other £(x) besides f(x) = xk.
Definition. Suppose that a subset Uc Qp has no isolated
points. A function f: U—>ﬂp is called locally analytic if for

every a € U there exist r and a; such that for all x in
n
Da(r) U

f(x) = zi =0 ai(x a)

It is easy to check that a locally analytic function f can be
differentiated in the usual way:

£f'(x) = 1im f(x+e:) £(x) 215 (x-—a) for x e Da(r)ﬁU.
€=>»0

Lemma. If f is locally analytic on Zp, then the limit

lm p ™ z n f(j) exists.

n=>-00 0<j<p

To prove the lemma, one easily reduces to the case when £(x) =

Za xi on D(l). (Thus, ai—->0.) Then we need to show that

z aiBi converges, but this follows because |Bk| < p. (More pre-

cisely, we have already seen that Bk € Zp if p-—l[k, and one can
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similarly use the p-adic integral formula

k-1
1-p

k k-1
) B = x du (x)
k 1- rk Z{

to show that pB, ¢ Zp if p-1]k.)

The approach of Kubota-Leopoldt is based on this lemma and the
formulas (7.1) and (7.2). In order to obtain a p-adic function out
of (7.1) as k approaches some p-adic s, we must omit the j
which are divisible by p and also restrict to k = ko (mod p-1)
for some fixed k,. If we write j = <j>w(j) for p|j, then we

0
obtain for k = ko (mod p-1) (see §3 for the definition of I*):

B
-0 = (" (- )

1 -n k k k
= -2 lim p < i -p j)

koo 0<3<p" 0.<_Jz<pn-1

k

=1 lim p™ z <>* w(gy 0.

k n

n=>o  0<3<p, plj

We can now define Cp X (s) by replacing k by 1l-s and applying
’

the lemma to f(x) = <x>]'-S

k
w(x) 0 (we take £(x) = 0 on pr).
Similarly, the p-adic L-function for a Dirichlet character x:

(Z/dZ)*—PQ; can be defined by setting

1 1 s
L (1-s,x) = == lim —=— z <3>" x(3). (7.3)
P ® n=-o ap" 0<3<dp", plJ

This approach to the construction of Cp,k and Lp can be
generalized as follows. Let X = lim (Z/deZ), as in §2. We call
a function f(x,s) on X xU (wher: U 1is a subset of Qp with no
isolated points) locally analytic if every (a,b) ¢ X X U has a
neighborhood (a + dezp) x (D, ()N U) on which f(x,s) =
z aij (x-a)i(s-b)j. Then it is easy to show that
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P = um L DG,
n=>o dp" 0<j<dp
exists and is a locally analytic function of s ¢ U (see [22]).
In the case of Lp(s,x), we had U = Zp and

<x>sx(x) if x e X*;

0 otherwise.

f(x,s) = {

A special case of this construction leads to the p-adic log
gamma function. We start with a function on Z_ XU of the form
f(x + s) with U now a subset of Qp which is invariant under
translation by Zp.
Lemma. Suppose that f(x) 1is locally analytic on s + Zp for

some fixed s ¢ € . Let

F(s) = 1lim p " z L EGs+ ).

n=—>-c Osj <p

Then F 1is locally analytic on s + Zp, and

F(x +1) - F(x) = f'(x).

The proof is easy; the last assertion follows because

F(x +1) - F(x) = lim (£(x + p™) - £(x))/p".

The classical log gamma function satisfies log I'(x + 1) -
log T'(x) = log x. So, by the lemma, the natural way to obtain a
p-adic analog is to let f£'(x) = lnpx, i.e., f(x) = x lnpx -x
(see the remark at the end of 8I.3). Thus, J. Diamond [22] defined
his p-adic log gamma function as

G (x) = lim p ™ z (x+§)1n_(x+j) - () (7.4)

P n—>o  05<p" P

for x ¢ Q -Z . Thus,
P P

Gp(x +1) - Gp(x) = lnpx. (7.5)

Note that it is inevitable that a continuous p-adic function
satisfying (7.5) not be defined on Zp. Namely, lnPO, and hence
either Gp(l) or GP(O), is not defined. It then follows by
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induction that G cannot be defined either on the positive inte-

gers or the negative integers, both of which are dense in Zp.

The other possible candidate for a p-adic log gamma function,
namely lan‘p, is defined on Z_, but it only satisfies (7.5)
when x ¢ Z; (see property (1) of I‘p).

The two functions G_ and lonp are related as follows.
First note that Gp(x) +G_(1-x) = 0, as follows immediately from
(7.4) (after replacing j by p'-1-j). I now claim: If x e Zp,
then

InT () = Z o (11X), (7.6)

PP O<i<p, pli+x P P
i.e.,, we omit the one value of 1 for which Gp((1+x)/p) is not
defined because (i+x)/p ¢ Zp. To prove (7.6), we note that both
sides vanish when x = 0, since Gp(i/p) + Gp((p-i)/p) =0; and
both sides of (7.6) change by the same amount when x is replaced
by x+ 1, namely by lnpx if x e Z; and by 0 1if x e pr.
Since the nonnegative integers are dense in Zp, we have (7.6) for
all x e Zp.

We discover an interesting relationship between Gp and the
zeta function if we expand Gp in powers of 1/x for x large.

Suppose |x|p > 1. We have

Gp(x) = lim p ™ 2 a X+ Inx +

n—o 0s3<p
x lm p™® z Q+d) (1o (1+))
n— 0<j<p” x |3
(-]
= (x-%)ln X - X+ x lim p-“l z n z (-1)k+1(%)k+1(11<'-ﬁ)
P n—o 0<j<p" k=1
00
B
1 k+l -k
= (x-3)In x - x + z — X .7
2010y & aD)

1 1 1
= (x-i)lnpx -x + To% 360x3

where we used (7.1) and the fact that B, = 0 for odd k > 3.

k
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Hence,
00

-k
1 X
Gp(x) = (x - 5) lnpx - x - kzl z(-k) T

Roughly speaking, one might expect that, since Z(-k) 1is an

-k
integral of tk, Gp(x) is essentially - zz J;k EE— du(t) =
jlnp(l - 5) du(t). We shall later look more carefully at this

possibility (see §8 and the Appendix).

Remark. In the classical case, Stirling's formula

n
n! = V2mn 5; e9/12n’ 0<06 <1,
e

gives

1 8
= (x - i) log x - x + o

T'(x)
2m
Thus, Gp is actually the analog of log(F(x)//Eﬁ). (From a number

log

theoretic point of view it is often natural to normalize the gamma
function by dividing by /27, TFor example, F(%)//EF = 1//2 is
algebraic; also, the right side of the Gauss multiplication formula
becomes simpler, see property (5) at the beginning of §6.) Note
that in the classical case the series (7.7) is only an asymptotic
series. We cannot simply evaluate (7.7) at x ¢ C, since it
diverges for all x: |B grows roughly like k!, in contrast

to |B

"
klp’ which is bounded.

Finally, we note the following "distribution property" of Gp,
which follows immediately from the definition (7.4) and the fact
that lnpp = 0:

G (x) = z G (u) for xeQ -2 ., (7.8)

P 0sip P\ P P P

8. A formula for L")(O,x)

The purpose of this section is to prove a formula for L'(0,X)
which is analogous to a classical formula of Lerch (see [97], p. 271):
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log d + z x(a) log T'(a/d)

L'(0,x) = B
Lx 0<a<d
= -L(0,x) logd + z x(a) log T(a/d).
0<a<d

We start by defining a twisted version of Gp:

G (%)= lim 1 z zj(x+j)(1n (x+j) - 1), (8.1)
Py 2 n—»w Yp 05:)<rprl P

where z' = 1, x€¢ Q -Z . In particular, G =G . The follow-
P P p,1 p

ing properties of Gp z are proved in the same way as the analogous
’

properties of Gp.

Proposition. The limit (8.1) exists for x ¢ Qp-—zp and satis-

fies:

sz’z(x+1) - Gp’z(x) = lnpx for x#Zp; (8.2)
p-1
i x + 1
Gp’z(x) = 1202 Gp,zp( > ) for x¢zp, (8.3)
G ) = B 1x+§(-1)k * L(-k,1,2) (8.4)
0,z = By, Ing VA" x w1,z .

for . |x|p > 1, where B, = 1/(z-1) = -L(0,1,z). (See formula
»

(1.4) with k=0, f trivial, d =1, z =¢€; 1in (8.4) we are

supposing that z # 1.)

We now give an expression for G z in terms of the measure
s
u_. Here zF = 1, z# 1, and yu is the measure on Z_ defined
z N a N z p
by uz(a +p Zp) =z /(1-zP ).

Proposition.

Gp'z(x) = - i[ lnp(x +t) duz(t) for x e QP-ZP. (8.5)
P

Proof. Let Gp z(x) denote the function on the right in (8.5).

s
Then for |x|p > 1 we have

= t
- - + =

P.Z(x) = i[lnpx duz(t) i[lnp(l x) duz(t)

P P
1 k j k -k
- -1npx uz(Zp) +zkzl E( 1) 3 t duz(t) x
P

51



k
. - D> ek ko
L(0,1,z) lnpx + el kX L(-k,1,z)
by (2.5). Thus, by (8.4), Gp’z(x) = Gp’z(x) for |x|p > 1.

-n

Now let U = {xeQ x= > for all Z}. Th
N ML T jez,}. Then

Qp-—Zp = L'Jn=0 Un' We prove that Gp’z(x) = Gp’z(x) for xe Un

by induction on n. We just proved this equality for n = 0. If
we show that EP 2 like Gp 2’ satisfies (8.3), then the induc-

tion step will follow, since x e U = (xH)/p € Un for

n+l

i=o0,1,..., p-1. But the change of variables u = pt + 1 gives

2 1n EEiieg a (o - [ tnrw aw
z PP 2P pz P z
P P
if we use the fact that lnpp = 0 and the definition of u, (as
in (3.2)). The property (3.4) then follows for Ep 2’ and the
proposition is proved.
Remark. If we define the convolution g of f with u by
g(x) = .{ f(x + t) du(t) for x ¢ Qp such that f is continuous
Z
P
on x + Zp, then it follows from (2.3) and the definition of u,
that zg(x+l) - g(x) = -f(x) when u = M, Thus, if we take the

preceding proposition as the definition of G then property

p,>z’
(8.2) follows from this equality with f = -lnp.

Corollary.

dp_(t)
My = nFa-n! I —%  for xeR-Z, kal. (8.6)
P,z Zp (x + ¢©) PP

Theorem (Diamond [22] and Ferrero-Greenberg [29]). Let x be

a nontrivial character of conductor d. Then

L'(0,%) = x;¢@ 6 (%) - L (0,x) Ind. (8.7)
P 0<a<p; pla 1 p(pd) P P

Proof. 1In order to relate twisted and untwisted Gp, we need
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a lemma. As usual, r 1is any positive integer prime to pd.

Lema. Let O< a <pd, p [ a, Bl(x) =x - %’, and define a',
0< a' < pd, by: ra' = a (mod pd). Then

a a a' a'
zzG (—= G(—+1 B(—. 8.8
27, 4 ‘<p 23 * 1nyr By (3g) 8.9
To prove (8.8), we use (8.1) to write the left side as

1 +de 8 -
nl_i;mw " k%rp zz-l ’ j) ( (Pad ¥ j) 1)
=r n]inw j osqup“ (pa—d + j) <1n (— + j) - 1>

j=-a/pd (mod rx)
= lim p'“z ( +a"+rj< (i+a“+rj ->
n=—-c Osj<p pd ) pd ) ’
where 0 < a" <r, a" = -a/pd (mod r). Since l'(i + a“) -2
) . r\pd Pd’
we find that the left side of (8.8) equals

r lim p-rl 2 (pd + j) (].npr + lnp(:_; + j) - 1)

n—p- o 0gj<p?
= r<B1(:—;) lnpr + Gp(:—;)).

We now proceed to the proof of the theorem. First, a twisted
version of (8.7) (for =z # 1) follows immediately by differenti-
ating under the integral sign in the definition

_ -s
Lp(s,x,z) = i[‘<x> Xl(x) duz(x)

and then setting s = 0, Namely, we have:

L;(O,x,z) = -},!* lnpx X, () du_ ()

x
= -1np(pd))i[‘)(ld1.|z - <§<pdxl(a) I lnp(p—d)duz(x)
pla
. -Lp(o,x,z)lnpd - 0<;pdxl(a)z fln — t)duzpd(x)
pla
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= -L (0,X,z) ln d + z x,(2)z® G (i.
P > P 0<a<pd, pra 1 Pszpd pd)

Now let A denote the right side of (8.7). We must show that

L;(O,x) = A, Summing the twisted version of (8.7) over

z¢# 1

with 2F = 1, and adding A + L;)(O,x) to both sides, we obtain

A + !ZL;,(O»X»Z) = L'(O,)() - L (0,X,2) lnd

z =1 z'=1 P

0<a<pd

. D X, (@) gch )

Note that the relation (4.5) between the twisted and untwisted Lp

glves

i- 2
<> () L (s,0) = L (s,X»2),
P zr=1 P
and, if we differentiate,

-In ¥ 1%y L(s30 + 1% y @) L (.0

z L' (s,x,z)

z =1
Using (8.9) with s = 0 and the lemma (8.8), we have

A+ zL 0,x,2) = L'(0,x) - <r>X(x) L (0,X) 1ln d
=1 P P P P

(8.9)

(8.10)

—_ Xl(a)< (&) + (:—;-%)lnpr>.

O<a<pd
pla

Note that <r>x(r) = rxl(r) and xl(a') = xl(a/r). Now using

(8.10) with s = 0, we obtain

A+ rxl(r)Ll;(O,x) - rxl(r)lnpr Lp(O,x) = L;)(O,x) -

rxl(r)Lp(O,x) lnpd + rxl(r) z xl(a')Gp(:—d)

0<a'<pd, pla’

1)
+ ry,(x)ln r z X, (a3 .
1P gcarGa, plart P
Since the last sum on the right equals B = -L (0,xX),
l’X]_ P
cel that term and obtain
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A+ @) L;(O,x) = L;(O,x) + X (x) A,

using the definition of A. Since rxl(r) # 1, this gives
L;(O,x) = A, and the theorem is proved.

Corollary.

' = a
L! (0,%) 0<;dx1(a) In T, ( ) L,(0,0) 1nd. (8.11)

The corollary follows immediately by using the relation (7.6)

between Gp and lan'p in the formula (8.7).

Remark. In a very similar manner one can express the values
of L_  at positive integers in terms of special values of the
successive derivatives of lan‘p (see [23], [56]). If Dk denotes
the k-th derivative, one has:

ik
LGy ) = S(-lf)l—)To<;dx(a) (Dklnprp>(;!l) for k 2 1.
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III. GAUSS SUMS AND THE p-ADIC GAMMA FUNCTION

1. Gauss and Jacobi sums

Let Fq be a finite field, let K be a field (such as C or
Qp), let

v Fi————»«*
be an additive character, i.e., a nontrivial homomorphism from the

additive group of Fq to the multiplicative group K*, and let

X: Fk K&

be a multiplicative character, i.e., a homomorphism from the multi-
plicative group F; to K*. (Warning: Characters ¥ on F:
should not be confused with the Dirichlet characters on (Z/dZ)*
which were considered in Chapter II and were also denoted YX.) The
Gauss sum (in K) of x and y 1is defined as

SW) = - D XG) .

xeF;

If Xy and Xy are two multiplicative characters of Fq, then
the Jacobi sum of (Xl’XZ) is defined as

J(xl,xz) = - zz xl(x) xz(l-x).

xqu, x#0,1

(The Gauss and Jacobi sums are usually defined without the minus
sign before the summation, but this definition is more convenient

for our purposes.)

The Gauss and Jacobi sums satisfy the following elementary

properties:
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(1) If ¥ 1is not the trivial character, and if ; - x-l de-
notes the conjugate character, then

gLY) g0GLY) = x(-1)+q.

(2) If ¥ 1is nontrivial and K = C, then
lg.w)| = v4.
(3) 1f X1Xg 1s nontrivial, then

S(Xls'b) g(XZ»'\(’)

J(Xl,XZ)

Note that the expression in property (3) does not depend on the

choice of (nontrivial) additive character .

Remark. g(x,¥) 1is the analog for Fq of the gamma function
on R. Namely,

7 -x d
T'(s) =fxse"7",
0

i.e., T(s) 1is the "sum" over the (positive) multiplicative group
of the field (i.e., the integral with respect to its Haar measure
dx/x) of the product of a multiplicative character x f=>x and

X

an additive character xp—se . The analog of property (1) is:

T(s) T(1-s) = in which 7 plays the role of q and

T
sin(ms)’
sin(ms), which is essentially e"is = (-l)s, plays the role of
x(-1). J(xl,xz) is the analog of the beta-function

T(x) T(s)

T(ers) ° (1.2)

B(r,s) = J; «1 (1-x)s-1 dx =
0
As an illustration of this striking analogy, compare the proof
of the expression (1.1) for the Jacobi sum in terms of Gauss sums
with the proof of the formula (1.2) for the beta-function in terms
of the gamma function. Both proofs are easy, so let's write them

side-by-side:
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B(r)s) r(r+s) = J(Xl’XZ) g(xle)'\b) =

00

L0l [y ey | D xtonyae0 D XX (W (y)
0 xqu yqu

o= o

j(xy)r-]'[(l-x)y]s-le-yydxdy = z Xq 3%, (-3 (y)
0 x,yqu

change of variables
u=xy, v= (l-x)y

x-—i‘—, y = utv

utv
= J jur-lvs-le-u-vdudv = z xl(u) xz(v)\b(u+v)
00 u,veF
- fur'le'“du Ivs-le-vdv = zz X, (W () :S Xo (VW()
0 0 ueF veF
= I(®) I(s). = 8(x;¥) 8(xyo0)

The analogy between Gauss and Jacobl sums and gamma and beta
functions goes deeper. The purpose of this chapter is to show that

Gauss sums are essentially values of the p-adic gamma function.

2. Fermat curves

Let K be a field containing d d-th roots of unity, for
example, C or Qp or Fq when ¢q =1 (mod d). We let Hy de-
note the set of d-th roots of unity, If K 1is of characteristic
p, we must have p | 4. The projective Fermat curve F(d),

d> 2, is defined by X% + v = 2%, The affine curve F(d)2ff

is defined by x"'l + yd =1 (x=2X/Z, y=1Y/2). The group

udxud operates on F(d) and F(d)aff by

(€, (x,y) = (&, E'Y), € &' € ny- 2.1)

We first consider F(d) over C and study the groups Hl(F(d),Q)
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and H;'R(F(d)/Q), and the action of HgXUuy on these groups.
To describe the homology Hl(F(d),Q), start with the path
Yot 10,11—=F@%E, v (©) = (¢, VD).

Fix a primitive d-th root of unity £. Let
Y= Yy - (LEY, + .8y - (€.,

so that Yy goes first from (0,1) to (1,0), then from (1,0)
to (0,&), then from (0,8) to (§,0), then from (£,0) to
0,1).

Note that F(d) 1is a nonsingular plane curve of degree d.

From algebraic geometr); we know the following

Fact. The 2g = (d-1)(d-2) differential forms

-1 s-1 _d
w o = xFlyS dfl’ 1<r, s<dl, r+s #d,
y
form a basis for

{differentials of the second kind}
{exact differentials] ’

H (F@/Q) =

and the g forms with r+s < d form a basis for the holomorphic
forms in l-L[])'R(F(d)/Q).

Note that for (£,8') ¢ udxud

€50, | ar'la's'lﬁwr,s - et

so that is an eigen-form for p,Xu,, which acts by the
Y,s d "d

character X, _: (E,£')F— E8'°, i.e.,

* =
[s% u)r’s xr’s(a) u)r’s for a ¢ Mg X ug-

Remark. The above assertion about w o with r+s <d form-
b4

ing a basis for the holomorphic differentials is true for any non-
singular plane curve of degree d (see [87], p. 171-173). The

assertion about differentials of the second kind can be proved as
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follows.

First note that the points at infinity F(d) - F(d)
in the coordinates u = Z/X = 1/x, v =7Y/X=y/x by u=0, v=20,
where I runs through the d d-th roots ?f -1, Consider the

aff
are given

(d-1)-dimensional vector space of differentials on F(d) of the
form H(x,y) —g%—, where H(x,y) = xd-zP(y/x) is a homogeneous
y

polynomidl of degree d-2. In the (u,v)-coordinates,

du
vd-1’

dx d-1 dx 1
= - P - -=P
H(x,y) ;a:r x (x/y) (y/x)( ;5) 5 )

at

which has residue res, = -Ql-dP(c) = ZP(Z) = ZO<1<d ai_1§1

4
the point at infinity (0,Z). The sum of the residues is clearly

zero, but the residues cannot all be zero unless H(x,y) =0, since

a4 = E%IZC g-iresc. Thus, the map from the (d-1)-dimensional

vector space of H's to the (d-1)-dimensional vector space of
possible residues at infinity whose sum is zero, is surjective,
i.e., any differential form on F(d)aff differs from a differential
of the second kind (i.e., one with all residues zero) by a differ-
ential of the form H(x,y)dx/yd'l. So for suitable H(x,y),

homogeneous of degree d-2, we can write

O - H(x,y) —SX_ - 4 qifferential of the second kind;
Y,s yd-l
applying (£,£)* gives

r+s dx . . <
£ wr’s - H(x,y) ;H:T = another differential of the 2nd kind.

If r+s # 0 (mod d), we can subtract and conclude that u)r’s is
a differential of the second kind, Finally, to show that the 2g
differentials wr’s with r, s < d are linearly independent
modulo exact differentials, it suffices to use the fact that they
are not exact (see (2.2) below) and they are eigen-forms for

udx ud with distinct characters.

We can thus write

1 1 Xr s
(F(A)/Q) = ® (F(d)/Q) ~*7,
o 1<r,s<d, r+s#d "or
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X
where the space H.;'R(F(d) Q) t°S

by Xe. s is one-dimensional and is spanned by wr
?

of forms on which udX Mg acts
’S.
After establishing these facts about H.[])'R(F(d) /Q), it is not
L]
hard to show that the classes of the paths {(£,% )Y}(E,E') €Uy Xy
span the homology Hl(F(d),Q).

We now compute:

Iwrs= (.I)rs- u)rs+ u)rs_ wrs
y 7 Yo O LEBY, T EBY, T Gy,
= J (1 - (LE* + (8,0)* - (E,l)*)u)r’s
0
s r+ r
Yo
- a-gha-g [ LY e
Yo y
But 1
/xrys'd & - L eFa-edys/a-1 de
M
0 1
= cll/ ur/d (l-u)s/d-l d—: (here u=td)
0
= %B(g,f-l) (see (1.2)).
Thus
r S
Iwr’s . (-¢g )d(l-E ) B(g’g). 2.2
¥

3. L-series for algebraic varieties (not to be confused with
Dirichlet L-series)

Let V., be a separable algebraic variety of finite type over

0

Fq’ and let V be obtained from V_ by extending scalars to the

0
algebraic closure Fq: V= V0®Fq. The Frobenius map F: V=V

is the map which raises coordinates to the g-th power (in terms of
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coordinate rings, it raises variables to the g-th power and keeps
coefficients fixed). Thus, the Fq-points of V0 are the fixed
points of the Frobenius F in V.

If ge EndV, let |fix(g)| denote the number of fixed points

of g on V. Thus, |V0(F n)l = | £1x(FY)
q

.

Let G be a finite group of automorphisms of V. over Fq,

0
let p: G=>GL(W) be a finite dimensional representation of G in

a vector space W over a field K of characteristic zero, and let

X = Tr(p). Then we define
el
n
T 1 -1 n
L(Vy/Fys6,P) = exp (Z T Tel Z x@& DI exEe)|) .1
0" "q e ot
e K[[T]].
For example, 1f G = {1}, then this is merely

20y /F) = exp (r; = |"o(Fqn)|)~

We shall be interested in the case of Fermat curves. Let V0

be the Zariski open subset of F(d) where none of the coordinates

vanish¢
Vg = {(x,y) | xd+yd-1, xy # 0}.

As always, we suppose ¢q = 1 (mod d), so that udC Fq. Let K
be an extension of Qp containing Qp(gfi-). We imbed Mg in K
by the Teichmuller map x F>w(x). Let G = Mg X Hyo which acts
on V0 by (2.1), Let X1 and Xy be two characters of My with
values in K, 1i.e., Xq is of the form x|—>u)(x)éli (i=1, 2).
Let p= Y = X1 % Xge Let ii (i=1, 2) be the character on

F; given by xb—-Yx, (x(q-l)/d).

Claim, The coefficient of T in the exponent in (3.1) is

62



equal to -J(il,iz).
To prove this claim, note that (x,y) € V is fixed by
Fo(E,E') whenever (Exq,E'yq) = (x,y). Thus, the inner sum in (3.1)

for n=11is

X & %, 8.
(x,y) eV
-1 -1

T heny, v ey

But xq-l, yq-l € uy 1if and only if u=xd and v=yd are in
F;. In that case xl(xq-l)xz(yq_l) = S'(l(u)s'(z(v). Since for each

(u,v) there are |G| pairs (x,y) with u=xd, v=yd, we obtain

T 2@ lexeep)] - AT
8<G u,veF:

utv=1

- X, (W)X, (1-u)
ueF;,Eu#O,l 17772

= -J(il’iz) .

We shall also be interested in the case of so-called "Artin-
Schreier curves". Just as the Fermat curve is connected with Jacobi

sums, similarly the Artin-Schreier curve
d
w-y = x5 plq, (3.2)
is connected with Gauss sums, Let A(d,p) denote the complete
nonsingular model of the plane curve (3.2). Note that here p
appears in the form of the equation. This is related to the fact
that Gauss sums, unlike Jacobi sums, depend on an additive character

v.

In the Gauss sums we study, the additive character { 1is always

v
assumed to be of the form Y: Fqu Fp—0>1(* for some character

wo of Fp, i.e., it is obtained by pulling back an additive char-

acter of Fp by means of the trace map from F_ to Fp.
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The curve A(d,p) 1is a degree d covering of the y-line which

p--y = 0 and over

is totally ramified over the p solutions of vy
the point at infinity, and is unramified elsewhere. It follows from
the Hurwitz genus formula (see, e.g.,[40], p. 301l) that 2g-2 =

-2d + (p+1)(d-1), so that 2g=(d-1)(p-1).

Over a field of characteristic p containing ud, the curve

A(d,p) has two types of automorphisms:

X Ex, yrH>y, Eengs (3.3)
and

X %, yFH>»y+a, ae Fp. (3.4)

We shall see that the first type corresponds to the multiplicative
character X and the second type to the additive character ¢ in
the Gauss sum. Note that, as in the case of F(d), the number

2g = (d-1)(p-1) 1is the number of pairs (x,y) with both ¥ and

y = l,booTr nontrivial,

Let V, = {=x,y) | yp-y=xd, x# 0}, let G = uyx2z/pZ,

and let p = y: (E,a)l—>x1(£)¢0(°l)~

Claim. The coefficient of T in the exponent of (3.1) is
equal to -g(il,'\b).

This claim is proved in a manner similar to the previous one:
—

Zx(g'l)lfix(Fog)l = . xlew
8eG €,a), (x,y7)
yP-y=xd4 0
(x,y) = (£x3,y%+0)

—
|

- (L) X Dy g 5%y
x’y
yp-y=xd=ueF;

= |6l z Xy @) ¥ (Trp ),
ueFﬁ q P
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as desired.

We now look more closely at L-series of this type. In particu-
lar, we show that the "bad" points of F(d) and A(d,p) that were

omitted in V (the points where a coordinate is zero) can in fact

0
be included without changing the L-series, if our characters are

nontrivial.

We return to the general case of a variety V The Frobenius

0
0 A closed point x of VO is the
same as an orbit of F; deg x 1is the number of points in the

F acts on the fa-points of V

orbit (equivalently, the degree over F_ of the field containing

the coordinates of the fa-points in the orbit).

Now suppose that V is quasi-projective, and G 1is a finite

0
group of automorphisms of VO over Fq (hence commute with F), Let

Xy = VO/G with the induced Frobenius endomorphism.

We first consider the case when G has no fixed points, i.e.,
for all geG and all vevo(Fq), if g#1, then gvév. To

every closed point Xq in XO of degree N, we associate a

conjugacy class Frob(x in G as follows. First choose an x

)
0
in the orbit X and a ve Vo(fA) lying over x. Then FNv also
lies over x, and so equals gv for some unique geG, Changing

our choice of x in the orbit x, or our choice of v lying over

0
x only changes g by conjugation. Hence we obtain a conjugacy

class Frob(xo) in G depending only on x (In our application

0
later, G will be abelian, so that Frob(xo) will be a well-

defined element.)

Let p be a representation of G in a finite dimensional
vector space W over a field K of characteristic zero, and let
X = Tr p. Then

Claim.

1
Det(l - p(Frob(xo))’Tdeg xo)

where the product is taken over all closed points x

L(Vy/Fys6:0) =TI

o of X,
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To prove this claim, we take the 1log of both sides and use the
n
fact that log Det(l-MT) = 'ZTT Trace(M”) for any matrix M,

Then we need only show that

ZX(E ) [£ix(Pg on )|

IGI
is equal to
r deg x
n- coefficient of T in 2 2 Trace p(Frob(xo))r,
Xg r=1
which can be written
s x(Frob™ S (x)),

Xq of degree s|n

and this equality follows easily by writing the first sum as the
sum of x(g) over all g and v with an=gv and then using
the definition of Frob(xo).

Now let us allow G to have fixed points. For v ¢ VO(Fq),

let Iv = {geG | gv=v}, the "inertia group” of v. Let

WY = {weW | p(g)w=w for all ger}.
Now Frob(xo) is only defined up to multiplication by elements of

I , as well as conjugation; nevertheless, the determinant of

deg x I,
T 'p(Frob(xo)) acting on W still depends only on Xgi

and it is not hard to show that
deg X -1
L(VO/Fq,G,p) = 1 Detfr~-rT p(Frob(xo))| 1v> . (3.5)
X, W
0
In our example VO = F(d), G = udxud, the fixed points occur
(1) when Y = 0, in which case Iv = lxud;
(2) when X = 0, 1in which case Iv = udx 1;
(3) when Z = 0, 1in which case Iv is the diagonal in udxud.
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If our character p =y = Xy X Xg has the property that Xpr  Xg»
and ers are all nontrivial (i.e., 0<r, s <d, r+s # d),

then in all cases Iv acts nontrivially on the one-dimensional

I
space W. Hence W Y = 0, and there are no contributions to

(3.5) from the points with zero X, Y or Z coordinate,

Similarly, when V, = A(d,p), G = udx Z/pZ, the fixed points

0
are

(1) the point at infinity, where Iv = Gj
(2) the points with x=0, where I = p,x {o}.

Again there is no contribution to (3.5) when the characters are

nontrivial.

We now return to the general case of a variety V Let pre

0° g
be the regular representation of G. We have

] if g=13
Trace pre

(8) =|
& 0 if g#l.

It is immediate from the definition that
n
T
L(VO/Fq,G,preg) Z(VO/Fq) = expzn |V0(Fqn)|,
and also

L(VO/Fq,G,D ) = Z(XO/Fq) (recall XO = VO/G).

trivial
Since trivially we have
L(VO/Fq.G.ol(Doz) = L(VO/Fq.G.ol)-L(VO/Fq,G.pz).
it follows that the decomposition
- deg P
Preg ®p ,
where the summation is over all irreducible representations of G,

gives a corresponding product decomposition of Z(VO/Fq):
_ deg P
ZVp/FY = Z(Xe/FD) ﬂL(vo/Fq.G.o) , (3.6)

where the product is over all nontrivial irreducible representations
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Suppose VO is a projective, nonsingular, geometrically con-

0’
VO by G, 1s also nonsingular, say of genus g'. We have

nected curve over Fq, of genus g. Then X the quotient of

polynomial in Z[T] of degree 2g
v = .
20o/F -D (- qD

Moreover, if p© 1s irreducible and nontrivial, then

L(VO/Fq,G,p) is a polynomial in T,

This was proved for curves by Weil in the 1940's, but it is only a

conjecture in the general case of higher dimensional V It then

0
follows that
Zdegp deg L(VO/Fq.G.D) = 2g-2',

where the summation is over all irreducible nontrivial representa-

tions op.

4, Cohomology

Let z2% =0 = {xeQ"™| |x|_ < 1}; thus, 2% jg
P Qunr P P P
P
the ring extension of Zp generated by all N~th roots of unity
with p } N,
Fact. For every prime £ there exists a functor Hl
projective nonsingular free modules (of rank 2g)
geometrically connected ZJ?, if L¢p
curves of genus g over r
over F Z8 4f gep
q P
(namel Hl v,z,) for %#p and Hl /2%y for
DemeY> Hgpalet 4y X =— crystalline P _—

0

and if F is the g¢-th power Frobenius endomorphism, then

f2=p), such that if V = VO®F Fq with V. defined over Fq,

Trace(PrH'(V)) = 1+4q- Vo FD - (4.1)
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This fact implies that

il n

T
Z(VO/F) = exp z 'y |V0(F n)|
k! n=1 q

00

n n n .1l
= exp = (1 +q - Trace(F* |H (V)) )
n=1

L .1
1-T 1-4qT

=1 L]

Det (1~ T-F*|H1(V)).

Here the Det term is a polynomial which is clearly in Z[T].
Similarly, for L-series one can construct for geG a "twisted"

’ 3 ' _— ~ [
variety Vg defined over Fq such that V0®Fqu ~ v0®Fqu = v,

while the Frobenius for V) 1s Fog (F 1s the Frobenius for

0
VO). Thus, (4.1) implies that
Trace((Flog)* [H1(V)) = 1 + ¢ - |£1x(Feg) . (4.2)

Now let p be an absolutely irreducible representation of G

in a vector space over a field K which we assume contains Z, or

2
Z;nr' Then the subspace of Hl(V)®K on which G acts by p 1is

EOMOV? = (1 2, x@ ) @wmen,
geG

and, using (4.2) and (3.1), one easily shows that
1 P
L(VQ/F,G.0) = Det (1 - T-P%| L WEOBP). (4.3)

We now apply (3.6) and (4.3) to our examples F(d) and A(d,p).
It follows from (4.3) that the coefficient of T in

L(Vo/Fq,G,p) is ~Trace F*|(H1(V)®K)p. In the case V., = F(d),

0
G = udxud, p= xrxxs with 0<r,s<d, r+s#d, we showed that
this coefficient is —J(ir,is) # 0. Since the 2g spaces

(e ox)c

are nonzero, it follows that each of them is

one-dimensional, and we have the direct sum decomposition
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X

X
Br@er - o flEer) T C.

r,s

1 erXS
Moreover, the eigen-value of F* on (H (F(d))@l()

is
Trace F* = J(ir,is). Then (3.6) (with V0=F(d) and X =V0/G

= the projective line) gives

1 S
ZFA/F) = +—r——= |1 @ -J3E.LX)D,
q (1-T)(1=~qT) lsr,s<d r’’s
r+s¢d

as Well explained in his famous paper in 1949 [99].

Next, let Vg = A(d,p): yp -y = x':l over Fq, q =1 (mod d);

G = uyx Z/pZ. We have shown that each of the 2g = (d-1)(p-1)
characters p = yXx \(10 with ¥ and \(10 nontrivial gives nonzero

)xxwo

Trace F*| (Hl(A(d,p))(Dl( = g, \(10°Tr). Thus, we again

have the decomposition
Xxy
Bla@,meK = © (' aca,e@k) O
X» \(10 nontrivial

into one-dimensional eigenspaces with F acting by g(X, \(JooTr)

on the xxwo—component. We conclude:

. .
ZAWD/F) = Tomr—y 18- 8 ™D,
@ T TDED Ly dentrtvial °

We obtain a number theoretic corollary if we replace Fq by

F a and replace g(X,J) by the corresponding Gauss sum over F ot
q q
&5 n(x,w) = -XZF* X(NF n/F x) w(TrF n/F X).
q € q° q 1 4 1

Namely, we have

g (X, WnoTr ) = action of the q"-power Frobenius
F q 0°TE/E, L o
on (H"(A(d,p))®K)

70



X x b
- (e a@emex) C

- n
= (e G vpet) s
q
which is known as the Hasse-Davenport relation for Gauss sums.
5. p-adic cohomology

By explicitly constructing a p-adic #' for A(d,p), we shall
- xp
derive a p-adic expression for g(X, ¥,°Tr) = F*|(H1®K)X 0,
showing how special values of the p-adic gamma function arise as

eigen-values of Frobenius. For simplicity, we shall assume p > 2,

m(x - xP)

A key role will be played by the function e considered

- %P
in 8I.3. As before, we denote E_"(x) = e"r(x * ).

Proposition. There is a one-to-one correspondence between

(p-1)-th roots m of -p and nontrivial additive characters \(Jo
of Fp such that

Vo) = E() = 147 (mod 1),
We then have
bo(a) = E (o(a)) for acF .

(Recall that w(a) denotes the Teichmiiller representative.)
P)

Proof, For x € D(1) we have: E_"(x)p = ep‘lr(x-x
i
2_(.Pil"L (x-xp)i. (Thus, because of the p 1in the exponent, we
can evaluate E_"(x)p by first evaluating the exponent and then
expanding.) Hence, if x ¢ D(1) satisfies x- x* = 0 -- in other
words, if x = w(a) for some a ¢ Fp -- then E_"(x)p= 1. Thus,
each E_"(u)(a)) is a p-th root of 1. It follows from the expan-
2.2

sion E“(x) = 1+ m + % m™x° + ... that E“(w(a)) Z1l+ma

(mod 1r2). The proposition now follows easily.
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One similarly shows that if y = \(JooTrF /T is the additive
9 P

character on Fq and if Be Fq, then

i
- p
v@® = J] e e®n,
0gi<f
where q = pf and T 1s the (p-1)-th root of -p corresponding
to wo.

Let V be a nonsingular algebraic variety over a perfect field
k of characteristic p. In our application V will be the curve
A(d,p) and k will be Fq. Let R be a complete discrete valu-
ation ring with maximal ideal MR and residue field k, and let
K be its fraction field, For us, R will be the ring of integers

in Qp(ﬂ:l/I, m), where Pl -p.

Washnitzer and Monsky [75] constructed an explicit version of
p-adic Hi which to a so-called "special affine open set" associ-
ates a K-vector space, If U = {Uj} is a coveFing of V by
special affine open sets, then the map Ujk—¢-H1(Uj) defines a

Zariski presheaf H' of K-vector spaces on V, such that the
cohomology Eg'q = HP(V,Hq) => H*(V) conjecturally abuts to a

"good" p-adic cohomology (in the sense of §4). This has been
proved in the case when V is a curve. We shall only need the

Washnitzer-Monsky H1 for curves.
Theorem (Washnitzer-Monsky). The functor
v h—-—a—ul(v) af HO(V,Hl) (global sections)

on complete nonsingular geometrically connected curves V satis-

fies the properties:

rank Hl(v) = 2 genus(V);
Trace(F*[HL(V)) = q + 1 - |£ix(P)],

when V = VO(:% k for some VO defined over Fq, vhere F = F
q q
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is the gq-th power Frobenius endomorphism of V,

. i
The basic type of ring which goes into the construction of H

is R<<x1,...,x >>, which is defined as

N
{za x¥ ¢ R[[xl,...,xN]]| for some real number B and
v €>0 we have ordPsze|w|+B},
w 1 N
where w = (wl,...,wN), X=X TR, |w] =Zwi. Equiva-
lently,

RESK 5 0oy X O> = {feR[[xl,...,xN]]| Jr>1, f -converges
for xl,...,xNeD(r)}.

It turns out that Hl for the p-adic "affine line" will be

R<<x>>®1(/% R<<x>>®K = 0, as expected.

Remark. In p-adic analysis D(1) can often be thought of as
the affine line, since it is the smallest disc containing the
Teichmuller representatives of the points of the affine line over
Fp. One might ask why the simpler ring A = {fe K[[x]]| f con-

verges on D(1)} cannot be used. 1In fact, d/dx is not surjec-
. j_ 3j
tive on A, (For example, a = E:pjxp 1 = :—y pr € A, but

j
pr A, so a is not :_x of any element of A.) 1In fact,

rank(A/%A) = o rather than 2-genus(line) = 0. However,

dd_x is surjective on R<<x>>®K.

For simplicity, suppose that the nonsingular curve Vaff is

given by one equation f(x,y) = 0 (as will be the case in our
application to A(d,p)). Consider the coordinate ring of the
Zariski open subset U of vaff where the tangent to the curve

is not vertical:
k[x,y,t]1/(£(x,y), tg—}f,—l).

Such an affine open set is called a "special affine" open set U
over k. We now define the '"dagger ring" for U to be the

quotient

73



+
AT = R<x,y, 0>/ (F(x,y), tg—i—l),
where F(x,y) 1is any fixed polynomial in R[x,y] whose reduction

modulo M, is £(x,y). Note that A+(U)/MRA+(U) - kix,y,t]/

(f, tg—:— 1), i.e., A+(U) "1ifts" the coordinate ring of the

+
special affine open set U. (Of course, A (U) 1is not unique,

since F(x,y) 1s not unique.)

In our example V = A(d,p), where f(x,y) = yp—y—xd, we

have g—f, = -1, We can take F(x,y) = yp-y—xd, so that JF/dy =

pyp_l— 1, which is invertible in the ring R<<y>> (since

SR N ¢35 DX - aff _ -
. Sely® DI mus, for U= A@,»* - a@p)

{point at infinity}, we have

+

AW = Re<xy>/GP-y-xD).

Because U = V - {point}, we are in an especially convenient
situation for computing Hl(V). Namely, if V 1is a complete, non-

singular geometrically connected curve over k such that V -

{point} is a special affine U, then

Hl(v) = Hl(V—{point}).
Roughly speaking, this is because, if Vireeesv,  are finitely many
points of V, then

1 1

H (V) e B (v-1{v, D

can be identified as the subset whose residue at each point van-
ishes. Since the sum of the residues vanishes in Hl(V— {vi}),
this subset is all of Hl(V- {vi}) if s=1.

We now state a general fact (see [75]) about lifting a
k-morphism ¢0: Ul—>U2
‘Y] A+(U2)—>A+(U1) of their dagger rings. TFor simplicity of

of special affine open sets to a morphism
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notation, we suppose that there is only one x variable, as will be

‘the case in our application. Suppose that
of
i
Ui = Spec k[x,y,t]/(fi(x,y), tTy -1, i=1, 2.

First of all, such a lifting ¢ exists (¢ is not unique). Next,
suppose that we fix an element ¢(x) € A+(U1) which reduces to
¢0(x) modulo MR' Then there exists a unique choice of ¢(y)
and ¢(t) 1lifting ¢0(y), ¢0(t). Finally, let

@, - At ® atwyax
atw

with differential d, and let HI(U) = HY(®Q, @K =
PRI

Atk ax/datW@K).  Then Hl(Ui) is independent of the
choice of Fi lifting fi’ and ¢*: Hl(UZHHI(Ul) is indepen~
dent of the choice of ¢ 1lifting ¢0. Thus, we may choose any

convenient lifting.

We show how to choose a convenient lifting of ¢0 in the case
U= Ul = U2 = A(d,p)élff and ¢0: X—>x, yFH*y+a, ae
{0,1,...,p~1}. We want to construct an endomorphism ¢ of
A+(U) - R<<x,y>>/(yp-y-xd)
which reduces to ¢0 modulo MR’ It is simplest to choose ¢(x)
= x. Then the above fact asserts that there exists a unique
d(y) € A+(U) such that ¢(y) = y+a mod MR’ To see this con-
cretely, we note that z = ¢(y) ~y=~a must satisfy
(z+y+ot)p - (z +y+a) = yp—y,
in other words,
-2
2+ 3(1;_) (y+ot)i zp—i + (p(y+a)p_1—1)z
=t + (y+)P-yPoa = 0. (5.1
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See example (2) in $I.4.b, where we saw that if ordpy > _pTll’
so that A = ordp((y+a)p-yp-a) > 0, then there is a unique
solution z with 0 < ordpz = X. This 2z can be expressed as a
power series in y by first solving (5.1) mod pZ)‘:

G+oP oz + (+aP-yP-a =0,
then substituting the approximate solution in place of all higher
powers zz,...,zp in (5.1) and again solving the resulting linear
equation for z, and so on. The result is a power series in y
with coefficients in Zp ¢ R which converges for ordpy > _p—%'
Hence, ¢(y) =z +y +a ¢ R<<y>> C A+(U) is the desired

lifting of ¢0(y) =y +a.

0f course, the other type of automorphism ¢0: X b—> Ex,
yb—>y, where Ed =1, Equ, can be lifted simply to
¢t xb—>w(E)x, yF—>»y, where w(f) ¢R is the Teichmiller

representative.

Thus, the group G = udXZ/pZ acts on A+(U), and hence on
the dagger cohomology

@, = atmoerkas satmoen.

6. p-adic formula for Gauss sums

Because we claimed that the dagger Hl is a good cohomology,
the subspace of Hl(A(d,p)) on which G = Mg X Z/pZ acts by xxwo
should be one~dimensional (if x and \(Jo are nontrivial), and the
q-th power Frobenius should act on it by g(¥, l,booTr), where
Clat th power X

Y- d *
X: F; ud K*,
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Since G acts on A+(U) = R<<x,y>>/(yp-y-xd), we can decom-

pose
Mook = © (ool .
all X, ¥,
The following proposition is due to Monsky. We let Xa denote
El—ﬁm(E)a(qt we let wtriv denote the trivial character on Fp,

and we let \(J_" denote the character a!—>E_"(u)(a)) on Fp (see

the beginning of §5).

Proposition. The subspace of A+(U) invariant under
{1}x2/pz ¢ G 1is R<<x>>; the subspace of AT(U)®K on which
Xg X Veri
Z/pz acts by ¥ is E_"(y)(R<<x>>®l(); atwy’a v

Xa* ¥y

= xa R<<xd>>; and (A+(U)®l() = E_"_(y) x2 (R<<xd>>®1() .

To prove this, first note that E,"(y) and E_"(—y) = 1/E_"(y)
have coefficients in R (see §I.3) and converge on a disc strictly
larger than D(1l); hence E“(y) is a unit in R<<y>>, In addi-
tion, E_"(y) transforms by 'JJ." under the action of Z/pZ, i.e.,

¢a(E_"(y)) = w_"(a) E_"(y), ae Fp, (6.1)
where ¢a is the lifting of yF—>y+a constructed in §5. To
see this, note that ¢a(E"(y))/E_"(y) is a p-th root of unity

(independent of y), because
- P _ P
(B g /B, ()T = M) 4T orr=yD

since ¢a(y)p—¢a(y) = yp—y. (Note that the extra p in the
exponent allows us to evaluate the exponent first, as at the begin-
ning of §5.) To determine which p-th root, we set y=0:

Ep(8,(0)/E (0) = E (0,(0) = E (o)) = ¥ (@),
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and (6.1) is proved.
Since A+(U)®l( clearly has rank p over R<<x>>®K (it

equals @ yi R<<x>>(®K ), and the subspace on which Z/pZ acts
0<i<p

by \(J_" (resp. V¥ ) includes E_"(y) R<<x>>®K  (resp.

triv
R<<x>>®K), the first two assertions of the proposition follow.
The assertions about the action of X, are obvious.

Remarks. 1, For fixed T, a1l . -p, we could also use the

units E,"(y)i € R<<y>>, 1=0,1, ..., p-1, since E_"(y)i trans-
forms by q;_"j' under Z/pZ, Hence,
i
AT ek = © B 6 Rex>@0).

0gi<p~1

P _ d
LT =YD oPTX

Note that E_"(y)p € R<<x>>, Thus,

E (y) 1s a Kummer generator of A+(U)®l( over R<<x>>®K.

2. All of this applies to any curve of the form yp—y = £(x)
e R[x]; the specific polynomial f(x) = x':l was not needed in

analyzing the action of 2Z/pZ.

Proposition, For \(JO =y and for x =X, lsa<d,

XxY
Hl(A+(U)®1() 0 is a one-dimensional K-vector space with basis
E_"(y) xade; if either x or \(JO is trivial, this space is zero.

Proof. We compute: dE_"(y) = E_"(y) dlog E,"(Y) =

E () dmly-y") = 1B () dxh = o1 ad7lE (ax.  Thus,

d (E_"(y)xaf (xd)) = E_"(y)xadTx (—‘Ndxdf (xd) + af(xd) + dxdf' (xd)) ,

so that for azl,
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)X xqjo E“(y) x2 Re<xd

) d(E"(y) x2 R<<xd>>®l()

>>% ®K

(Hl afmen

R<<x>>OK
a d
(-1rx +3+ xd—x) (R<<x>>®1()

3

The proposition now asserts that the cokernel of 93 = x;l—x+g-1rx

on R<<x>>®K is K if a 2 1. (The triviality of
X*xy
Hl(A+(U)®l() triv o immediate, since % is surjective on
Xepsy XV
R<<x>>®@K;  the triviality of Hl(A+(U)®K) triv. 70 will be

shown later.)

We compute:

xm+1 - m:g LI a(_::r_m),
so that
& < n+3) (m+3-1)...(2
mZo b = mZO bm+1( d)( "n:!l-l ) (d)
e o+ (m+2-1) -+ [a+1+2
-3 zl"nm;bm1( d)( d_"m+)1—n( d)>'

Because we have

a
ordp b (m+1)! <‘“+3>

mhl - ofl > ord b ., %ﬂ (see §I1.3,
m m+1 |3 m formula (3.3))
Sm-!-l
= ordpbm_._l - p—_l (see 81.3, (3.1)),
mtl

while ordpb > (ml)e+B  when me_._ € R<<x>>(®K, it

mH = 1*
follows that the constant sum in (6.2) converges (since Spb1 S

(p—l)(logpm +1)). Similarly, ordp of the inner sum inside the
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9 1is at least

1+8S
miann <(m+1)e +B - TT‘) > n€ +B'
for some €' > 0 and some real number B'., Thus, any element f
in R<<x>>®K can be written as const + dg, g € R<<x>>®K. It
remains to show that 1 cannot be written as 9g, g ¢ R<<x>>®K,

if a>1, 1in which case we will have proved that the cokernel is

precisely the constants. Suppose g = anxn, 1 = 9g. Then

n d a n
1+1rx2bnx (xa+a) anx N

and comparing coefficients gives

= 8
1= 3b
bn= “abn—l (@21
n+ 3
n
- e = e T
=
(n+1)!(n+a>
n+1l

Thus, ordpbn < (Sn+1-1)/(p—l), which is not > en+B for any
€ >0 and real number B. Thus, g § R<<x>>(®K.

The final assertion is that the cohomology is zero when a=0,

adx
X

Roughly speaking, this is because the basis E_"(y) X for the

cokernel of 3 only makes sense when a > 1, More precisely,

-1

E“(y) x"'l R<<xd>>dx ®K

d (E_,r ) R<<xd>>®l()

X Xy
Hl(A+(U)®1() triv T o

R<<x>>®K

(% - 1r) (R<<x>>®K)
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To show that dix-" is surjective on R<<®>®K, it suffices to
-1

et n
show that its formal inverse -l(l -li) = -~ 2 70 l(i)
T T dx 0=0 dx
takes a series in R<<x>>®K to a series in R<<x>>®@K. But this

n}

is easy using the same estimate for _n(:) as above, This com-
m

pletes the proof of the proposition.

Recall that our Gauss sum g(X,¥), ¥ = \(10°Tr, is the action
1.t x> ¥
of the g-th power Frobenius F =F. on H(a (WXK) . Since
q
the curve A(d,p) is defined over Fp, the p~th power Frobenius
FO = Fp  also acts on A(d,p) and hence on Hl(A+(U)®K); and
P
we have F = Fof , where gq = pf Z 1 (mod d). However, FO does
not commute with the action of G = udx Z/pZ; 1its matrix in the
eigen~vectors of G 1is not diagonal. More precisely, we have
1,4 x* ¥y 1.+ xFxv
Proposition. Fg(H (N UHIEN) ) < H (A (1K) 0,

This 1s an immediate consequence of the commutation relation

Fe(E,0) (xuy) = (EPxP, yPaaP) = €PxF, yP+a) = (€P,)oF (x,y),

for (£,a) € G.

a)

Thus, 1f ¥ = Xg» l<a<d, and if we let a', a",..., a‘7’,

(f~1) J

ceey & denote the least positive residue of p“a mod d,

then for some constant A = A(a,d,T) we have

e ) = aEm L o rlatoen. 6.9

Then we obtain

f-1
8y, Yot = jI-%Ma(j).d.w). (6.4)
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P a'
Proposition. A(a,d,m) = -pm I‘p(l——).

This proposition, together with (6.4) and the elementary fact

f-1
that Riii a3 = the sum of the p-adic digits in agi%—,

j=0
imply:

f-1 j
= (g
Theorem. ( p)f!_:b[ I‘p(l <d )
’

g(X » ¥ _oTr) =
a’® '’ “Sa(q—l)/d

where < > denotes the least positive residue modulo 1 (not to

be confused with our earlier meanings of < >),

Proof of proposition. Let R be the ring of integers in

Qp(g/I,vr). First we imbed

0
At = Recx,y>/ (6P - y - xYE———r [ [x]] (6.5)

by sending y to the formal power series solution of yp— y = xd

near (0,0), 1i.e., with zero constant term: y = -xd + ... . To
see that such a solution exists (and is unique), one can use a ver-
sion of Hensel's lemma (§I.2) for the "x-adic topology" in R[[x]]
(the topology which says that two series are close together if
their difference is divisible by a large power of x). Then y=0
is a solution mod x of f£(y) = yp— y - xd = 0; moreover f'(0) =
-1 # 0, so the existence and uniqueness of the desired series

¢y(x) ¢ R[[x]] 1is assured.

The imbedding (6.5) induces a homomorphism

atatmen 1L R [x]1OK)
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which commutes with the p-th power Frobenius F¥%, where F_, acts

0 0
on R[[x]] by sending x to x? and acts on A+(U) by sending
x to xP and y to the unique element which lifts yp and

satisties F (y)P~F (y) = <P,

We have
adx\ _ m(y-y
0B, x*LE) = ofe
Thus, by (6.3),

( --‘lrx':l a dx
e X —
x

p o
)xac:‘_x) - oTx L& dx

d
) - Maam e <2 & (6.6)

£3
F5

in Hl(R[[x]]®K). In other words, the difference between the two

sides of this equality lie in d(R[[x]]®K). Note that
=]

a
2 ax® ¥ 4o 0 ARIx]]) < -BeR for all a,
0~ x n
n=1
Thus,
o0

ax® 8 . G@RI[x]I®K) <> ord a 2 ord_n + constant
&S0 b P P

for all n.

Evaluating Fs in (6.6) gives

pd d
TP QUL de mod dR[[x]I®K).  (6.7)

dx
X

Hi
>
13
"

e P

Equating powers of x in (6.7) gives

n m ord (md+a') + const
(=m) ERD (=m) mod p R (6.8)

n! m}
where m 1s chosen so that md+a' = p(nd+a), 1i.e., m =
Pa—;al + pn.

We now choose a sequence of n's for which ordp(nd+a) (and

hence ordp(md+a')) approaches infinity, Namely, we can let n
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approach =-a/d by taking the p-adic expansion of -a/d; but it is

more convenient to expand -a/d in powers of ¢ = pf. Letting

b= %la, so that 0 < b < g-1, we have
a
-4

2
g b +bg +bg” + ... .

- _qd
Let n = b+bq+...+bqj 1 = -l—dLa. Then ordp(nd+a)

d n! Sn jSb {milarl

> fj. Further note that or p("n) = - -1 = - 1° Similarly,
w35 )

ordp(ﬁ).= =y + const. Thus, multiplying (6.8) through by

m!(-1)™™ and carefully taking note of ordp and the effect on the

congruence, we obtain
fj- ij/(p-l) + const

- n-m m!
X = p (~m or mod p
5b
But j(f-p_l)—>°° ag j=——=o (this is because b < ¢g-1 and

so has at least one digit less than p-1l; thus, Sb < f(p-1)).

Hence,

n-m m!

X = p lim (-mM or

j—boo

$ -t
where n = g(qJ—l), m = pn+Pad—a. Note that I I i =
= ism’ Pli

p*2p°*°np = pnn! .

Thus, by the definition of I‘p,

ray = 0 JI 1= pm? —"“'—n

P igm, pli n! p
Hence,

A o= p lim (M@ (o™l 0 @),

j-—>oo

Now

(__")n—m (_1)m+1 Pn . (_p)n - _"pn—m'
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- -nt
since 1L = -p. Since pn-m = - pad_a; and n—-»-g and
L]
m—»-% as j=—>o ,  we conclude:
- -t
A= -pm(Pama/d g, r@+D),

m—-a'/d

and the proposition is proved.

Remarks. 1., For simplicity, suppose p = 1 (mod d)., Then the

theorem reads:
gty = ~p 1V ad, (6.9

Suppose 1 <r, s, r+s < d, and let ;a denote id—a’ By
property (3) of Gauss and Jacobi sums at the beginning of this

chapter, (6.9) gives us:

r (5 r (E
ey Sl 0
Xp*Xsg (r+s) ’
I‘P e
which looks remarkably similar to the beta function value in (2.2)

for the classical periods of the differential W, o !

2. The above theorem also gives an analogy between the Chowla-
Selberg formula for the periods of an elliptic curve with complex
multiplication and a p-adic expression for the roots of the zeta

function of the elliptic curve; see [37,34].

We have thereby shown Gauss sums to be p-adic analogs of
special values of the gamma function, In the next section, we show
how Stickleberger's theorem on the ideal decomposition of Gauss
sums 1s an immediate corollary. In the next chapter we shall see
a subtler application: the proof that the p-adic Dirichlet

L-function Lp(s,x) has at most a simple zero at s=0,
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7. Stickleberger's theorem

Stickleberger's theorem gives the ideal decomposition of Gauss

sums g(x,¥) in Q. Let K denote the field Q(QJI). Let P

be any fixed prime ideal of K 1lying over p. Let g be the num-

ber of elements in the residue field O/P of P; thus, ¢ = pf

is the least power of p such that d| q-1. We identify Fq with
0/P, and let

X: F; = (0/P)*——>u':l c K
be a multiplicative character. Let a be the integer, 0<a<d,

xa(q—l)/d for x€0/P, Thus, if we use

determined by X(x) mod P =
P to imbed K in Qp, and consider X to take values in Qp,

-1 o
then ¥ 1s the aﬂg—— th power of the Teichmuller character, 1i.e.,

X = ia in the notation of §§3 -6,

The Gauss sum g(x,Jy) is obviously an algebraic integer in
K&/1). By checking the action of Gal(X(&YI)/K) on

g = - 2 x(x) v(x),

xeF*
we see that g(X.¢)d lies in K and is independent of the additive
character . By property (1) in 81, g(X,¥) divides gq = pf;
hence, the ideal (g(x,w)d) in K must be a product of powers of
prime ideals of K which divide p. Stickleberger's theorem gives

these powers,

We can consider g(x,w)d p-adically if we choose an imbedding
18 KQQP(Q/]_.). As explained before (§II.2), for our fixed
prime ideal P of K dividing p, we obtain such an imbedding
1= by taking the completion of K 1in the P-adic topology;

this imbedding 1 allows us to identify X (strictly speaking,
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HCRY d
1ox) with @ . The power of P dividing the ideal (g(x,w) )

d
in K 1is simply ordp(lp (8 (¢¥) )) .

Recall that Gal(K/Q) = (Z/dZ)*, where Oj': Ei——PEj for
j e (2/dZ)*, Ed = 1. Gal(K/Q) permutes the prime ideals of K
dividing p, and we let Pj = ojP. Of course, Pjst,
is in the subgroup of powers of p in (2/dz)* (the "decomposi-

if 3/3'

tion group" of P),

If a/be Q with g.,c.d.(b,d) =1, Ilet <a/b>cl denote the

least positive residue of a/b mod d, 1i.e., the least positive

k such that kb £ a (mod d)., Let

(s) = I

P&y
3 e (2/azy*/{p¥} 3

be the ideal decomposition of g(x,\b)d.

f-1
Stickleberger's theorem. a, = 2<—a/jpk> , 1.e.,
3 k=0 4> ==
< <—a/j>dgj>
(g(x,w)d) . pMe(z/azny*

¢}
where we write P 3 for ojP =P

3

Proof., a, = power of P dividing g(x.‘i’)d

3 k|
= power of P dividing oJTlg(x.w)d
-1
= power of P dividing g()((j ),\(J)d,
- ; 5> 971
" % 1) -1 <1/J>d <a/3>d 3
ere Y = oj ox 1s the character X = W . . But
according to the theorem in §6,
a1 £-1 £-1
ord_(1,(gx3 2, Yy - Z(d—<pka/j> y = Z<—a/jpk> . Q.E.D.
pP k=0 R = d
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IV. p-ADIC REGULATORS

1. Regulators and L-functions

If K is a number field with T 2

complex imbeddings, a classical theorem of Dirichlet [13] asserts

real imbeddings and 2r

that the multiplicative group E of units of K 1is the direct
product of the (finite) group W of roots of 1 in K and a free

abelian group of rank r,+r,-1, 1.e., there exist units €yseees

1 "2

e such that every unit can be written uniquely in the form
r1+r2—1
m, m mr1+r2—1 _—
nel ey ey 4r o1 mieZ, n a root o .

172

If ¢1. e ,¢r1 denote the real imbeddings and ¢r1+1' e ’¢r1+r2

denote the complex imbeddings (one chosen from each complex conjugate

pair), then the map

(toglo, ()., Loglo_ (O,
1

rl+r2
G )): k——>r

takes the group E/W of units modulo roots of 1 isomorphically

to a lattice in the hyperplane LIRS AR +xr1+r2=0 in ¥ Hr,-

dimensional real space, The volume
det(nilog |¢i(ej)|), 151,j5r1+r2—1,
where n1=1 for 15r1, n1= 2 for 1>r1, of a fundamental

parallelotope (actually of its projection on the x -hyperplane)

r1+r2
is called the (classical) regulator of K. It depends only on K,
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not on the choice of 'fundamental units" ej or the ordering of the

¢i’ and it is always nonzero.

In this chapter we discuss two very different types of p-adic
regulators, The first type, due to Leopoldt, takes the same units
ej as in the classical case, replaces the imbeddings ¢1: K& C
by imbeddings ¢i of K into the algebraically closed field Qp,
and replaces log by lnp. Because there is no natural way of
eliminating X, of the p-adic ¢i the way we eliminated one ¢i
from each complex conjugate pair in the complex case, Leopoldt fur-

ther assumes that r,=0, i.e., K 1is totally real.

2
The second, more recently developed type of p-adic regulator is
due to B. H. Gross ([35], see also Greenberg [31]). It applies to
number fields K which are totally complex, i.e., = 0; more
specifically, to so-called CM fields, which are quadratic imaginary
extensions of a totally real field 1(+, i,e., K= 1(+(/—_E) for
some o which is positive under all imbeddings 1(+G—>R. Gross

works not with ordinary units, but rather with "

p-units". A p-unit
is an algebraic number which has absolute value 1 at all places
(including archimedean valuations) except for those over p., In
other words, all of its conjugates must have complex absolute value
1, and its ideal decomposition only involves primes dividing p.

A key example of a p-unit is g/E, where g 1is a Gauss sum for

a finite field of q=-pf elements, The multiplicative group of
p-units, if tensored with Q and written additively, is isomorphic
to the vector space of divisors P|p Q (P-P). Among the imbed-
dings ¢i: KG——>QP, Gross chooses one from each coset modulo

+ (the decomposition group of p), so that each ¢1 gives a dif-
ferent permutation of the divisors P-P, For a more precise state-
ment, see below, Gross then takes the determinant of a %x%
matrix, where g is the number of primes P over p. Gross's p-
adic regulator is very different from Leopoldt's. In Gross's case
the set of units considered and even the size of the matrix vary

completely from one p to another.
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The basic way in which regulators occur "in nature" is in the
expansion at 1 or 0 of - and L-functions., First, in the
classical case, let

1
NR)y®

be the Dedekind zeta function of the number field K. Here the sum

Lg(s) =

is over all non-zero integral ideals A of K, and N is the
norm, The series converges for Res >1 and can be analytically
continued to a function which is holomorphic on the complex plane
except for a simple pole at s=1., The residue at s=1 equals
2" Lom™2
io}
where T and ¥, are, as above, the number of real imbeddings
and pairs of complex imbeddings; w 1s the number of roots of 1
in K, D is the discriminant of K, h 1is its class number, and
R 1is its regulator, The subtlest and most elusive term in this

formula is the regulator.

The Leopoldt p-adic regulator occurs in a similar way. Let K
be a totally real field, i.e., r2=0. Serre [85] has shown how to
associate to K a p-adic zeta function ?; p(s) which is defined
and holomorphic on the closed unit disc 1n Q (actually, on a
slightly larger disc) except for a possible pole at s=1, Conjec-
turally, the pole at s=1 1is a simple pole with residue given by

r
2 lh RE!Leogoldt
w/D

Here all of the terms have been defined above except for E, which
is a product of Euler factors. (The phenomenon of 'throwing out

the p-Euler factor" can be expected to occur in all p-adic versions
cf classical formulas for ¢- and L-functions.) 1In the simplest
case, when K=Q, we have r =1, h=1], w=2, D=1,

L 1 R, Leopoldt
=1, and E = 1—1—>.

Note that there's an ambiguity of sign in vD. We will see

that also Rp,Leopoldt is only defined up to a sign. In the
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classical case one can normalize by taking the absolute value of the
determinant in the definition of R and the positive square root
of |D|. 1t is harder to fix the sign in the p-adic case.

It is also conjectured that always Rp,Leopoldt #0, i.e.,
there really is a pole at s=1, Both the residue formula and the
non-vanishing of the regulator have been proved in the case when

K 1s an abelian extension of Q (the "abelian over Q" case). In
that case CK is a product of Dirichlet L-series, and the neces-
sary facts were essentially worked out by Leopoldt [64] (see also
[61]). We shall prove the non-vanishing of Rp,Leopoldt below in
the abelian over Q case, The proof uses a theorem from transcen-

dence theory, which will be stated without proof,

But very little is known about Rp,Leopoldt in the non-abelian
case, A partial result supporting the residue formula was obtained
by Serre [86], who proved that for any totally real field K, if

%,p has a pole at 1, then R Leopoldt # 0.

It should also be mentioned that the "Leopoldt conjecture"

(non-vanishing of R ) and the expected relationship

p,Leopoldt
between the p-adic regulator and the residue at 1 has been gener-
alized by Serre to p-adic "Artin L-functions' associated to repre-

sentations of the Galois group of k/k (k totally real).

Gross's p-adic regulator, we shall see, is connected to the
behavior near s=0 of p-adic Artin L-functions, These are p-adic
L-functions Lp(s,p) which p-adically interpolate values of the
Artin L-series associated with a representation p of the Galois
group of a CM field K over a totally real ground field k. The
order of zero , of L (s,p) at s=0 has been conjectured for
some time (see [29]). Gross further conjectures that the leading
term in the Taylor series at 0 of Lp(s,p) is

m
o
Rp,Gross(p) A(p) s ’

. -
where Rp,Gross(p) is Gross's p-adic regulator and A(p) 1s an

explicitly given algebraic number, which turns out to be a product
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of certain Euler type factors and an algebraic number which is in-
dependent of p. (For a more detailed account, see below.) Note
the analogy with the Leopoldt residue formula discussed above, in
which the leading coefficient of the Laurent expansion (at s=1)

is the product of a (p-adic transcendental) regulator, an Euler
term, and an algebraic number independent of p., In the classical
case, as we shall see below, the functional equation for L-functions
glves a direct relationship between the expansion at s=1 and the
expansion at s=0., But in the p-adic case there is no functional
equation, and no one has yet been able to explain the analogy
between the Leopoldt and the Gross formulas, in the sense of provid-

ing a direct link between the two types of p-adic regulators.,

Gross's conjectured formula was motivated by: Ferrero-Greenberg's
proof [29] that p-adic Dirichlet L-series have at most a simple zero
at 0; and a conjecture of Stark and Tate concerning the leading
coefficient at 0 of classical Artin L-series. Gross's conjecture
is known to be true when K 1is an abelian extension of Q. 1In the
abelian over Q case it reduces to the case when 0 is a one-
dimensional character, mp= 1, and the conjecture asserts that

L;(S.p) = RP,GrOSS(p) A(P) # 0 at s=0,

We shall give Gross's variant of Ferrero-Greenberg's original proof

of this fact,

Gross developed his conjecture as a p-adic analog of a
conjecture of Stark [90] and Tate [93]. Instead of giving the
Stark-Tate conjecture in the general setting, I'll illustrate the
idea by showing how it interprets the classical formula (see §II.5)

8 — -a
L(1,x) = ——dx 2 x(a) log(l-7 ), (1.1)
O<a<d
where ¥ 1s a nontrivial Dirichlet character of conductor d,

is a primitive d-th root of 1, and gx = Zx(a) Ca.

For simplicity, we take the case when X is a nontrivial even

character and d= pN is a power of an odd prime p.
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Let K = Q(¢), where [ 1is a primitive d-th root of 1, and
let k' = Q¢ +§—1) be its maximal totally real subfield, Then
cal(K/Q) ~ (z/dz)*, o (¢) = &%, and Gal(K'/Q) ~ (z/dz)*/{s1}.

Let G denote (Z/dZ)*/{+l}, so that summation over a€G means

taking representatives from half of the residue classes in (Z/dz)*,

Let g be a generator of the cyclic group (Z/dZ)* (recall
that d is an odd prime power), so that oge Gal(l(+/Q) generates
Gal(l(+/Q). Let

g -1 g -8
-1 -
e=(@- ) g = g°-c

-1
-z
Then it can be shown ([61], p. 85) that € 1is a Minkowski unit in

1(+ (also in K), 1i.e., {Gaa}aeG generate a subgroup of finite

index in the group E of units of K', Let Byy C E denote this
group of "cyclotomic units". (Equivalently, the o are multipli-

catively independent except for the single relation Hae oae = Ne

G
=1, The situation is a little messier when d 1is not a prime

power,)

Let C[G] be the group-ring over the complex numbers of G =
(z/dz)*/{+1}, Let I be the ideal generated by the element

z Then it is easy to see that Ecyc is a free rank-one

gec

Z[G]/I~module with generator €, where we define
a
La 0 ¢}
227 = JJwe °, Zaoo € Z[C)/T;
and Ecyc:@c is a free rank-one C[G]/I - module.

Let X denote C[G]/I. Let LOG: X=>X be the map defined
on a basis element by

LoG(o,) = bZG 1og|oboae| obl.
The determinant of LOG is clearly the regulator of 1(+ (times
the index [E:Ecyc]). We can write the map LOG explicitly as

abg -abg

-1
Ob .

wo(a) « D los i
[ 4

beG
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It is easy to check that this is a well-defined map from X to X.

An irreducible representation of C[G]/I is the same as a non-
trivial even character mod d. Let X be such a character., Define
the Yx-regulator RX to be the determinant of the map induced by

LOG on V @ X, where G acts on the l-dimensional space VX
clG]
by X. Here VX @ X can simply be identified with the YX-eigen
clG] -
space of X, i.e., the l~dimensional subspace spanned by I yx(a) oa.
Then

LOG (Z X(a) oa)

2 x(a) 1og|0 o e|

a,beG
= 2 x(b) x(c) log|0 e| (c = ab)
b,ceG
= (2 X(a) loglo e|>< 2 X(b) ob>.
aeG beG
Thus
ag ~ag
by t°-t
R, = x(a) log|*—3>—
X a;; g8 - ¢
= -2ag ~2a
- 2 X(a) (Log|1-2 "%8| = 1log|1-2""%|)
aeG
— -2 — -
- Eb x(28) X(2ag) log|1-7 "8 - me X(28) log|1-z"22|

ae aeG

x(2) (x(g) - 1) 2 X(a) log|1-z7®|

aeG

(2)

x(g) - 1) 2 X(a) log(1-2™%)

a=1
(because X 1is even, and log (1-Z 2)(1-z%) = log |1~z 2||1-2%]).
Comparing with (1.1), we see that the only difference between RX
and L(l,Y) 1s an algebraic factor; that is, RX is the trans=-
cendental part of L(1l,x). It is this fact which Stark and Tate

generalize in their conjecture,

We get a companion fact about the behavior of L(s,X) near
s=0 if we use the functional equation for L(s,¥), which relates

L(s,X) to L(l-s,X), and hence relates behavior near s=1 to
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behavior near s=0, Suppose X 1s a nontrivial even character,

Then the functional equation is (see, e.g., [41], p. 5):

om0
L(s, 'T(d) T(s) cos(s/2) '

If we let g=—>0 and write T(s) = T(s+1) /s, we find that

L(0,x) =0 (which we knew, since B =0 for ¥ even and non-

1,x
trivial), and the Taylor expansion at s=0 starts out

L(s,X) = s % L(1,Y) + higher terms.

Hence, the transcendental part of the first nonzero Taylor coeffi-
clent is the same as the transcendental part of L(1,Y), i.e., it
is R)—(. _Note that the non~vanishing of R)—( implies non-vanishing
of L(l1,x), and at 0 it implies that the zero of L(s,X) 1is
simple, i.e., L'(0,x) # O.

More generally, the Stark-~Tate conjecture can be stated equi~
valently in terms of the behavior near either 1 or 0, thanks to

the functional equation.

In the p-adic case, there is no known (or expected) functional

equation, and so there are two completely different p~adic analogs

of the Stark-Tate conjecture, one at s=1 (due to Leopoldt and

Serre), and one at s=0 (due to Gross).

2. Leopoldt's p-adic regulator

Let K be a totally real number field, n = [K:Q]. By Dirich~
let's unit theorem, the group E of units of K 1is the product of
the roots of 1 in K and a free abelian group of rank n-l, Let
epreresey 4 be generators of this free abelian group. Let ¢1,...
¢n: KG—>QP be all of the n possible imbeddings of K into the
algebraically closed field Qp. The Leopoldt (p-adic) regulator of

K 1is defined as the determinant of the (n-1) x (n-1l) matrix

EEYE O S 2.1

Lemma. The Leopoldt regulator R =

Rp,Leopoldt(K) is indepen-
dent up to +1 of the choice of basis {ej} and the ordering of
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t o, .
he
Proof. Any other basis €' = {e.} can be written in the form

e' = eM, where M is an (n-1) X (n~1) matrix {mk } with m . €
M 3 3
Z and det M = +1. The notation €' = € here means that

k3 Then also ¢,(e!) =1 ¢ (emkj) and 1o ¢.e' =
k 157 7 % e p'i

e! =T e
Ik
@np¢ie)M, i.e., 1np¢1(e5) = i mkj 1np¢1(ek). This means that

replacing € by €' in (2.1) amounts to multiplying the matrix
(2.1) by M on the right. Since det M = +1, the independence

of choice of basis e 1is clear,

Rearranging the ¢1""’¢n-1 clearly changes the determinant

at most by a sign. It remains to consider what happens if some ¢k,

n
1 < k £ n~1, changes plages with ¢n. Since I ¢i(e ) =1 for

i=1 3
any unit ej, we have :E 1np¢1(ej) = 0, and so adding all the
i1 =
other rows to the k-th row gives 1n e.) = ~1ln e in
g > 1a 9, () = ~la ¢ (e))

{=
the k~th row; hence interchanging ¢k and ¢n only changes the

determinant by a minus sign, and the lemma is proved.

The Leopoldt conjecture. Rp,Leopoldt(K) # 0 for any totally

real number field K.

In the simplest case, when n=2, i.e., K 1is real quadratic,

the non~-vanishing of R (K) simply says that lnp of a

p,Leopoldt
fundamental unit e is nonzero. Since the kernel of the 1ln_ map
consists of powers of p times roots of unity, while ordp of any
unit is 0 and e 1s not a root of 1, it immediately follows
that 1npe # 0,

More generally, we shall prove Leopoldt's conjecture for all
abelian extensions K of Q. The proof relies upon the p-adic

version of the following deep theorem of transcendence theory.

Baker's theorem [9]. If 0+# a € Qcc and {log a}cc

are linearly independent over Q, then {log ai} are linearly
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independent over Q.

But before showing how the Leopoldt conjecture for K/Q abelian
can be derived from the p-adic Baker theorem, we first give another
interpretation of this conjecture, in terms of which one can state

a natural more general conjecture.

Let K be a number field with ring of integers 0 and group

of units E, Let [K:Q] = n =1r +2r where r (2r2) is the

1 2’ 1
number of real (complex) imbeddings. Let Pi’ i=1,...,8, be the
primes of K dividing p, and let Opic Ky  be the Pi-adic com-

i
pletion of 0 € K. Let N, denote the norm from K, to Q.
i 1 P
Let
A= 0* , A ={(x,-..,x)eA| MN.(x,)=1}
it Py 0 1 g i1
Let E0 € E be the subgroup of units of norm +1; E0 has index
2 in E if 0 has units with norm -1, otherwise E0=E. Then
c .

E, 0C>0P1 imbeds in Ao.

Let EO be the closure of E0 in Ao. To get a concrete idea

of what E0 looks like, let el""'er1+r2-1 € E be a set of

fundamental units of norm +l1, 1i.e., they generate EO modulo
o

roots of 1. Thus, E, = {nHejj| o_eZ, n aroot of 1}, Now

J

let N be an integer such that e? 1 (mod Pi) for all i and

g
j. For example, N can be chosen to be I (qi-l), where q; ©
i=1

£,
p 1 1is the number of elements in the residue field O/Pi' Let
N
e' = e,. Then e! can be raised to p~adic powers a,eZ in A
3 3 3 P P 37 0’

because its image in each 0% is close to 1. It is easy to see
i
that Eo c AO is precisely the set of elements of the form
PR}
nIIejJ e5 j, where n 1s a root of 1, 0gB,<N, and ajeZp.

3

Proposition. For K totally real, Leopoldt's conjecture is
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equivalent to the assertion that EO is a subgroup of finite index
in A

Thus, if K has r2 pairs of complex imbeddings, a natural

generalization of Leopoldt's conjecture is: AO/EO is isomorphic
r
to (finite group) X sz.

Proof of proposition. First note that the fundamental units

M
e, can be raised to some power eNP

b 3

in OP has p~adic absolute value less than p
i
i, j. For example, if all of the Pj_ are unramified (and p> 2),

M
such that the image of e?p -1

“UD g ann

then we need only take e?, where N 1is chosen as above so that
N _ s v NPM ' vaj
ey E 1 (mod Pi) for all i, j, Let ey = ey let E' = {Hej |
o=
B o= e J c E [ %
- E {Hej | aye Zp} E,. Then E' has finite

index in EO, and E' has finite index in _E_o.

Note that, if we replace ej by e3 in the definition of R =

a,€2}c E
J

Rp Leopoldt’ obtaining a new determinant R', the effect is to

multiply the regulator by a nonzero constant (in fact, by (NpM)n_l
or 2(NpM)n—1, since each entry in the (n~1) X (n~1) matrix is
multiplied by NpM, and we also have to throw in a 2 1if EO#E).

Thus, the proposition is equivalent to: R'=0 1if and only if

SE < o

00 7 1,

be the imbeddings KP1€—> Qp. Let KPj_’t = oitKP.’

Let n, = [Kpi: Qp] be the local degree, and let ¢
N

0

i°

i
= =" =
Pt = oitOPi' Let B Qp » and let By {(yl,...,yn) € B|

I y. =0}, Define LOG: A=—>B by
i

LOG(xl,. .o ,xg) = (lnpoll(xl) - ’lnpol,nl(xl) sesesy

In O veeyln O .
n, gl(xg), slng g‘ng(xg))
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-1/ (P'l) } ,

Let 0' = {xeO* | |x-1| <p which is a subgroup of
Py Py P

finite index in 0; . (Since |0“:x-1|p is independent of the

imbedding, we denote it |x-1|p.) Let 1 + m o€ 0") be an element
i

with |m maximal, and denote m =0, (). We claim that lnp

1|p it

L] - 1
maps OPj_'t = oitopi isomorphically to "itOPi,t' To see this,

first check that for any anP ¢ the series

1'
armp® =Y (S

converges to an element of 0!

p whose p~adic distance from 1 is

1'
|a1r1t|p. Since lnP and the exponential function give mutually
inverse isomorphisms between the open disc of radius p_l/(p_l)
around 1 and the open disc of radius p_l/(p_l) around 0, it
OPi In,°0,
' =
follows that OPj_ (1+1r1) = "itOPi,t'
g
Thus, 1 0! is a subgroup of finite index in gA which is
i=1 i
taken isomorphically by LOG to the free rank-one ®0P ~module
i=1 "1
in B generated by (.. .lnp('lrit) vee) . Since

1=1,...,g;t=1,...,n1

rankZpG-)OPi = n, it follows that rankZ LOG(A) = n, and

P
rank, LOG(AO) = n~1l, Since LOG maps E'CHO'; isomorphically to
i

P
the Zp-submodule of B, spanned by

0

{(.-.1np01tei"')1,t}j=1,..-.n-l,

it follows that
(A Elc<o & [LOG(A )+ LOG(E')] < o

(2.2)

=3 rank, LOG(E') = n-1
P
<> the set of vectors (2.2) has rank n-l

& R' # 0. Q.E.D.
The proposition just proved can be paraphrased roughly as
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follows: Leopoldt's conjecture says that a system of fundamental

units is independent not only over Z, but even over Zp.
We now prove Leopoldt's conjecture in the abelian over Q case.

Theorem, Let K be a totally real abelian extension of Q.
(K) # 0.

Then Rp ,Leopoldt

Proof., Fix an imbedding ¢: Ke>Q , Let G = Gal(K/Q), n=
[K:Q]. Then the imbeddings ¢1: KG—>QP are {¢°0}0€G'
be any fixed element of G. Let {ej} be a basis of the units of
K. Then

R =

Let 00

(K) = Det {1np¢0(ej)}j=l

Rp,Leopoldt: seessn=l3 Oe G-{oo}'

If R =0, then the rows of this matrix are linearly dependent

over Qp, i,e.,

0
2 a2l 1n ¢o(e,) = 0, j=1,...,n-1,
ceG-{Oo}0 P i

0
for some a e Qp not all zero., Since any unit e 1is a root of 1

times a product of the e,, we have

3

2 ag 1n_¢0(e) = 0, ag =0, for all units e, (2.3)
JeG P 0

Let QP[G] be the group~ring over Qp of G. Define
I = { 2 a o eQP[G]| Z ag 1np¢0(e) =0 for all units e}.
geG g€t
Then I is an ideal of Q [G], since it is clearly closed under
addition, and for any T€G, z a0 ¢ I =z a; 1np¢0('re) =0
[¢;
for all units e = TZaOO e I, By (2.3), Zago is an
element of I. Since ag =0, this element is not a multiple of
0
Lo, Hence, we can find a nontrivial character ¥X: G—-PQ; such
that I ag x_l(o) # 0, (This is because the function £(0) =ag
on G can be expanded as a linear combination of characters of G:
1 0 -1

f=2Ic with ¢ =~ a g); if ¢ =0 for all non-

x xX x T a g %X X "

trivial ¥, then f would be a multiple of the trivial character,
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and I ago would be a multiple of Z0.)
So let X be such that Zag x_l(o) #0, and let
OX = 2)((0) g, (2.4)
Then, since I 1s an ideal, it contains
o __ 2 2 0 .=l _ 2 0 -1
OXZaoo OOTaTX(T g) = ( a; X (o))ox.

Since the coefficient is nonzero, it follows that o _e I. Note

that also 0, = Z0 €¢I, because I 0(e) =1 for all units e.

1
Thus, I contains 0 _ -~ 01 = (x(0) -1)o, 1i.e.,
X ofid
2 (x(0) - 1) 1np¢0(e) = 0 for all units e. (2.5)

o#id

We now use the p~adic version of Baker's theorem, which was
proved by Brumer [15]. It is the same theorem, except that log
is replaced by 1np, C 1s replaced by Qp, and we fix an imbed-

ding of Q in Qp instead of C. That is,
-adi Qc c
p-adic Baker theorem., If 0 # a € Q Qp and {1npa1} Qp

are linearly independent over Q, then they are linearly indepen-~

dent over 6

Because of this theorem, we may conclude from (2,5) that for

all e the set {1np¢0(e)} is linearly dependent over

0 G-{1d}
Q, i.e., over Z. Thus, for every e there are integers o,

g by
=0 such that 1np¢( To(e) 7) =0, i, o(moce) )

d
0eG
is a power of p times a root of 1. Since ordp of any unit is

with m,
i

m,
zero, 1l a(e) o must be a root of 1. Thus, replacing o by a
multiple, we obtain: for each e there exist L not all zero,

but with L 0, such that I c(e)lno =1,

But, by a theorem of Minkowski ([73], p. 90), there exists a

m
unit e such that T o(e) ° = 1, m,,=0, implies that all of the

d

m0=0. That is, there exist units whose conjugates are multipli-
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catively independent except for the single relation Ne = Illo(e) =1.

This contradiction proves the theorem.
The Leopoldt conjecture for all totally real fields would fol=-
low from the following conjecture in transcendence theory.

Conjecture (Schanuel). If @;,+0050 € C are linearly indepen-

dent over Q, then
cent over =hen a

Tr.deg.Q Q(al,...,ar, e 1,...,e Yy >,

The same holds if al,...,areﬂp are in the disc of convergence of
the p-adic exponential function and are linearly independent over
Q.

To see how Leopoldt's conjecture would follow from Schanuel's
conjecture, we shall suppose that K 1is Galois (the general case
can readily be reduced to the Galois case), in which case Minkow-~
ski's theorem cited above ensures the existence of a unit e which
together with its conjugates Oi(e), g€ Gal(K/Q), generates a
subgroup of finite index in the unit group. Let ¢1 = ¢°0i be the
imbeddings K&>Q . In Schanuel's conjecture let r=n-1, o, =
1np¢1(e), i=1,...,n-1. Replacing the full unit group by the sub-
group generated by the ¢1(e) only changes the regulator by a
nonzero constant multiple. If we set ej =¢j (e), we have ¢1(ej) =
¢(010j (e)). The regulator for the ej is then the determinant of

a matrix each of whose rows is a permutation of

)

L TR SR G e NS

with one entry omitted. Schanuel's conjecture says that a

Q. Qa

1

o are algebraically independent. But vanishing of the regula-

t:rlw0uld give a nontrivial algebraic relation between the a's.
(The easiest way to see the non~triviality of the polynomial in
al,...,an_l is to note that if it were the zero polynomial, then
the classical regulator, which is the same determinant with oti =
log|¢(01(e))|, ¢: Ke=—>»C, would also vanish, and it is well

known that the classical regulator is nonzero.)
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3. Gross's p-adic regulator

Let K< C be a Galois extension of a totally real field k.
Let T be complex conjugation. Suppose we have an imbedding
¢2 KG->QP which extends a fixed imbedding kG—>QP. Then any
other such imbedding is of the form ¢°0, 0e Gal(K/k). By a complex
conjugation of ¢(K) ¢ Qp we mean the image of T under any of
these imbeddings ¢o0, 1i.e., any of the automorphisms
(420010 (3o0) "L = go(a1o1)e¢™ ! of ¢(K). If K/k is abelian,
then of course there is only one complex conjugation ¢°Te¢-l of

(K.
Let k be totally real. Suppose we are given a representation
p:  Gal(k/k)=———>Aut(V),

where V 1is a finite dimensional vector space over  , which is
trivial on Gal(k/K) ¢ Gal(k/k), i.e., P can be considered as a
representation of the quotient Gal(K/k). If p of any complex

conjugation is the automorphism 1 (resp. -1), it is said to be

an even (resp. odd) representation.

Using results of Deligne and Ribet [21], one can associate a
p-adic L-function Lp(s,p) to any even representation p. (If p
is not even, the associated p-adic L-function is identically zero.)
L (s,p) 1is a meromorphic function from Zp to Q. It is con-
jectured to be holomorphic, except for a pole at s=1 when p
contains the trivial representation. Lp(s,p) is called the

"p-adic Artin L-series assoclated to 0."

Example. Let k =Q and K = Q(f), where [ is a primitive
d-th root of 1. Let dimV =1, i.e., p 1is a one-dimensional
character. Such characters p correspond to Dirichlet characters
Xt (Z/dZ)*—*Q; by the correspondence

p(oj) e = x(3)e, oy € Gal(K/Q) = (z/dz)*,
where e 1s a basis of V = Qpe and j e (2/dZ2)* 1is determined

3

by 0 as usual by 0,(z)=z’. Then p 1is even (resp. odd) if

3
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x(-1) =1 (resp. x(-1)=-1). 1In this case the p-adic Artin L-series
associated to p 1is simply the p-adic Dirichlet L-series Lp(s,x)
which we studied in Chapter II.

In this example, recall that Lp(s,x) p-adically interpolates

the algebraic numbers
L0 = (- e o Lk, W™,

where « 1is the Teichmuller character. Gross's conjecture concerns
the expansion near s=0 of the p-adic Artin L-series LP(S,D).
In the present example note that when 1-k=0 1in the above formula,
the p-adic L-function is related to the classical L-function for
the character xm-l. Specifically,

L0 = (1-x ) LOw ) = (yw ") -3 D) ()

b
If x 1s even, then xm-l is odd. The Gross conjecture for the

expansion of LP(S,D) near s=0, which in some sense is a vast
generalization of (3.1), will thus involve expressions associated

to the odd representation p(:)w-l.

It will take us a while to work up to the precise statement of
Gross's conjecture. We first define the "p-units" of a number field
K:

()

E=E7(R 45 lee K| |e|v= 1 for all valuations v]pl.

This means that (1) in the factorization of the fractional ideal

(e) = HPmp only P|p occur; and (2) under all imbeddings K&>C,
e has complex absolute value 1. Note that the p-units are not
contained in the ring of integers 0 C K. Condition (2) means that
the m for P must be negative the m for any complex conjugate
l(P). If all of the m=0, then it is well known
that condition (2) implies that e is a root of 1.

prime ideal oT0

In the above example, when K = Q(Z), an example of a p-umit

is a ratio of Gauss sums of the form (see Chapter III)
~ d, .-1 d
g(Xa! '\b.".°Tr) /g(Xa ’ '\b.".°Tr) .
We shall see that these p-units play a crucial role in the case
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when K 1is abelian over Q, which is the one case where Gross's

conjecture is proved.

The basic case which is of interest is when K 1is a CM ("com-
plex multiplication") field, i.e., a quadratic imaginary extension
of a totally real field K+. In that case there is only one complex
conjugation, namely, the unique nontrivial element T of Gal(l(/l(+),
and we denote o = Ta for a€K and P = 1P for a prime ideal P
of K. Thus, if K 1s a CM field, (1) and (2) give

ceE®P @) = (o) - ;—II /Py P 3.2)
P

Writing (e) additively gives a homomorphism
g® K)—>®Dz (P-P),

where the sum is over primes P of K dividing p, one from each
complex conjugate pair. The kernel of this homomorphism is the
group of roots of 1 in K, and the image certainly contains
@hZ (P-Is), where h 1s the class number of K, because, if we

write the principal ideal Ph = (&), we have
EP (k) 5 0/5 ——> 1 (P-F).

Thus, if we tensor the Z-module E = E(p) (K) (i.e., the abelian
group with respect to multiplication, which we write additively)

with Q (thereby killing roots of 1), we obtain a Q-vector space
EQ®Q *~ ® q (P-P).
Z

We shall want to adjust the above homomorphism E—>® z(P-P)
given by el (e) = Zmp (P-P). Namely, at each P 1insert the
residue degree fP = [0/P: Fp], where 0 is the ring of integers
of K and Fp is the field of p elements. Also, insert a minus

sign. Thus, let
¥ 43¢ 'szfP P-P.

This map ¥ extends to an isomorphism ¥: E(R)Q—=>(®q (P -P).
It is not hard to construct the inverse ¢ of the "divisor

map" Y. Let h be the class number of K, and write Ph = (a).
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Let e =a/x ¢ E. Then e 1is determined by P up to a root of
unity, and so the element

oP-PF) = ﬁee E®Q (3.3)

is well-defined. Extend ¢ by linearity to (¥ Q(P-P). Clearly
¢ and Y are inverse to one another. These maps allow us to
think of E@Q as divisors, and to think of any additive function
on E which kills roots of unity (for example, lnp) as a
function on the divisors @ Q P-P).

We now define a function LOG (not the same function as the
LOG in the preceding section) by letting ¢: KG—>QP run through
all imbeddings, letting P
is defined by

° be the prime ideal dividing p which

P¢ = {xe0] |¢)(x)|p <1}, (3.4)

and setting

LOG(e) = Z e P, ece® .
¢ P [
Combining terms with the same P¢, we have

LOG(e) = ; In () P-P) « Do, P-P,
where the sum, as usual, is over P|p, one taken from each complex
KP/QP(¢(e)),
where ¢ 1is any imbedding for which P = P¢. Since LOG kills

roots of 1 and is linear on E (i.e., LOG(elez) = LOG(el) +
L0G(e2)), it extends uniquely to E@Q, and so, via ¢, to

®-P:
106: @ QP -P)—>@ Q, (P-F). (3.5)

conjugate pailr. Here NP(e) is the local norm N

Since LOG kills only roots of 1 in E, it is easy to see that
its image in @ Qp (P-P) has Q-rank g, where 2g is the

number of primes P over p.

But the interesting question is the Qp-rank of the image. 1In
other words, are the vectors LOG(ej) even Q -independent as

{ej} runs through a "fundamental set of p-units" (i.e., a maximal
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set of p-units which are multiplicatively independent)? Gross con-

jectures that they are.

Gross's first conjecture. Let LOGy be the endomorphism of
P
@® Qp (P-P) obtained by extending LOG linearly from (® Q(P-P)
o ® Q, - P). Define

Rp,Gross(K) = Det LOGQ .

P
Then

Rp ,GrOSS(K) # 0.

We continue to let K denote a CM field, a purely imaginary
quadratic extension of the totally real field 1(+, and let k
denote the totally real ground field. Let G = Gal(K/k), and let
p: G=—>-Aut(V) be a representation in a finite dimensional Q -
vector space V. (Note: Any continuous representation p: Gal(k/k)
=——>Aut(V) which is even (resp. odd) factors through Gal(K/k)
for some CM field K, where p 1is even (resp. odd) if its value
on complex conjugation is 1 (resp. -1); since we shall only
consider such p, there is no loss of generality in taking K to
be a CM field.)

G also acts on the Qp-vector space

X 4% @® e, (P-P)
by permuting the divisors P-P. We write P’ for oP; note

that P°T = gtP = (PT)°. Note that complex conjugation acts by -1.
We can combine the action of G on V with its action on X by
looking at the subspace
v®n°
QP
of G-invariant elements in the tensor product. (In our discussion
of L(1,x) and the Stark-Tate conjecture in §1, we dealt with

VX @ X. For one-dimensional X, this is isomorphic to (V)—(@X)G,
c[G]
reflecting the fact that the behavior of L(s,X) near s=1 is
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related by the functional equation to the behavior of L(s,i) near
s=0.)

To see what (V(>3){)G looks 1like, suppose that G acts tran-
sitively on the primes P of K over p (i.e., there is only one
prime of k over p), and let P0 be a fixed prime ideal of K

over p. Let D, < G be the decomposition group of PO' We shall

suppose that theorepresentation p 1is odd. Then as a vector space
(V(>DX)G is isomorphic to the subspace VDO of V 1left fixed by
p(DO): namely, let ve VDO correspond to
> p(VOP] ¢ VO N°.

g mod D0

To give a simple example, suppose that k =Q, K=Q&), ¢ a
primitive d-th root of 1, G = (Z/dZ)*, and p 1is one-dimensional.
Thus, p 1s given by a Dirichlet character ¥: G=——>Q*. Further

suppose that p = 1l Pg splits completely in K, 1i.e., d|p-l.
geG

In that case (V&) 0 1s spanned by the vector z x (@) Pg.
OeG
(Compare with the definition (2.4) of OX € QP[G] in the proof

of Leopoldt's conjecture for K/Q abelian.) More generally, if
pZ 1 (mod d), then the same element spans (V(>3X)G if x(p) =1,
but (VX =0 if x(p)#1.

Returning to the general case of an odd representation p of
G = Gal(K/k), K a CM field and k totally real, we see that the
endomorphism L0G, of X = (® e, (P-P) 1is G-equivariant. This
P

()

is because, for e ¢ E=E " (K) and 0¢€G,

LOG(ge) = ZIn ¢(oe) P = ZIn ¢ P _, = ZIn $(e) P9,
o P ¢ ® P $0 ® P

since we have P R PO = oP directly from the definition (3.4).
o1

¢ ¢

Thus, LOGy 1induces an endomorphism of (V@X)G, which we
P
denote LOGV. Gross's regulator for p is defined as

R, Gross(® = Det L0Gy.
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If the first Gross conjecture is true, then LOGV is also an iso-

morphism, and Rp,Gross(p) # 0.

The earlier regulator R (K) 1is a special case of

p,Gross

R, Grogs()+ Namely, let k= K*, and let p: Gal(k/KD)=——>{+1}
’

be the unique nontrivial character. Then (V) 0¢ =%, and
Rp,Gross(p) ° Rp,Gross(K)‘

Recall that if G = Gal(K/k) permutes the primes P of K
lying over p --i.e., if there is only one prime of k lying over
p --then dim (V€<))()G = dinm VDO, where D0 is one of the decom-
position groups. More generally, if there is more than one prime
of the ground field k 1lying over p, we have the picture

K 4 eee P o 4 ees P

| R
P oo P

I 1\/r

Q P

Then for each 1, G permutes the Pij’ j= l,...,gi, lying over
Pi’ n
a vector space to @ A 1, where D

and the same argument shows that (V(’DX)G is isomorphic as
1 is the decomposition group
of Pil' We let

D
m, = dia V@2 = > aim vt
T

Then Rp,Gross(p) is the determinant of an mpx m, matrix.

For example, if V 1is one-dimensional, i.e., if p: Gal(K/k)
—'PQ; is a one-dimensional character, then mp is equal to the
number of primes Pi of k 1lying over p such that p 1is trivial
on one (and hence on all) of the decomposition groups D, of primes

of K 1lying over Pi. In the case of one-dimensional ;, conjec-
turally the mp vanishing Euler factors (l-p(Pi)) in the

Deligne-Ribet [21] function Lp(s,pu)) at s=0 should lead to an
mp-fold zero at s=0; and it is further conjectured [29] that the
zero 1s of order exactly m_. But it has not even been proved that

s}
Lp(s,pu)) has a multiple zero at s=0 when mp>l.
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Gross's conjecture, which presumes that the order of zero is at
least mp, concerns the coefficient of smb in the Taylor expan-
sion at s=0 of Lp(s,pw). In terms of his conjecture, we shall
see that the assertion that Lp(s,pw) has exactly an nb—fold zero
).

at s=0 1s equivalent to non-vanishing of Rp,GrOSS

Gross's conjectured leading coefficient of Lp(s,pm) at s=0
incéludes a certain algebraic number coming from the complex-analytic
Artin L-series whose special values are p-adically interpolated by
Lp(s,p). We first recall the definition of the Artin L-series
assocliated to a representation p: Gal(K/k)=—>Aut(V), where now
V is a finite dimensional complex vector space. Let P be any

prime of k (not necessarily lying over p). Let gq =N Let

K/
P be a prime of K over P. Let Ipc Gal(K/k) be the inertia

group of P, and let Dp © Gal(K/k) be its decomposition group.

Let FPe Dp be any automorphism such that Fpx = x1 (mod P) for

any x in the ring of integers 0 of K. This Frobenius Fp 1s
uniquely determined up to an element of IP. Hence the "local

factor at P"

Det (1 - q'sp(FP)IVIP),
where VIP is the subspace of vectors fixed by D(IP), does not
depend on the choice of Frobenius for P. If we change the choice
of prime P of K 1lying over P, the effect is to conjugate Fp
and IP by some element of Gal(K/k). Hence the determinant is
unaffected. Thus, the above local factor depends only on p, P,
and the complex variable s. The Artin L-series L(s,p) is defined
as the product of these local factors over all primes P of k.
This Euler product converges for Re(s) > 1 and has a meromorphic
continuation onto the entire complex plane. The Artin conjecture
asserts that it is holomorphic, except for a pole at s=1 1if p

contains the trivial representation.

Example. Take the simple case when k =Q, K=0Q(), ¢ a
primitive d-th root of 1, G = Gal(K/k) = (Z/dZ)*, and p 1is a
primitive character x: G —>C*., If the ideal (p) of Q divides
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d, then it ramifies in K, and I (for any P|p) is the kernel
ord

of the map (Z/dZ)*=—>(Z/d'Z)*, where d' =d/p P . Since

X 1s primitive, it is nontrivial on IP, and so VIP= 0. Thus,

the local factor at p 1is 1.

If, on the other hand, p}'d, then Fp = p € (Z/dZ)*, and the
local factor is (1 - p~%(p))~l. Hence,

L(s,p) = ﬂ(l - p-s)((p))'l = zx—(-:—) = L(s,x),
pld "

which is the usual Dirichlet L-series.

Recall that in the case of Dirichlet L-~series, before p-adically
interpolating its values at negative integers we had to modify it
by removing the Euler factor at p:

- -1 -
L¥(s,x) = > @ TTa-e%en™ = a-pXe)Le.x.
p/n T L4p

A similar modification is required in the general case of Artin
L-series before we can make the transition to p-adic Artin L-series.
Namely, given our fixed prime p, we define the modified Artin
L-series L*(s,p) to be the product of the local factors at all

primes of k not dividing p.

In the case of Dirichlet L-series, the values at negative inte-
gers l-n are -Bn,x/n € Q(y), the field generated by the values
of x. A similar fact was proved for Artin L-series L(s,p) by
Siegel [89]. Namely, first note that the representation p: Gal(K/k)
——>-Aut(V) can be obtained by extension of scalars from a repre-
sentation in a K-vector space VK’ where K 1is a finite Galois
extension of Q. (In other words, for a suitable basis of V, the
matrix extries in p(0), O0eGal(K/k), are all in X.) Then Siegel
showed that L(1-n,p) ¢ X, and, if 0p, o€ Gal(X/Q), denotes the
representation obtained by composing p with the action of ¢ on
Aut(VK), then L(1-n,0p) = 0L(l1-n,p). The same is then clearly
true of the modified L-function L*(1-n,p).

By fixing once and for all an imbedding 6‘-—’-Qp, we can
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consider p as giving a p-adic representation, which we also denote
p, in V (:)Q , which we also denote V. Then there exists a
meromorphic function L (s,p) on Zp with values in Qp which

satisfies
L (l-n,p) = L*(1-n,0 o™, nx2

(where we use the fixed imbedding 6"—-—>Qp to identify complex and
p-adic representations and L-function values). When n=1, this

relation
-1
L,0,0) = 1*(0,0@u )
is also known to hold if P 1s one-dimensional (or a direct sum of
representations induced from one-dimensional representations); it

is conjectured to hold for general p. LP(S,D) is identically

zero unless P 1s an even representation.

Gross now defines a second modification L**(s,p) of the Artin
L-series. Recall that to get the first modification L*(s,p), we
threw out the local factors at primes P of k over p, by
multiplying by the determinants (here P 1is any prime of K over
P, q = NpP)

Det (1 - q'Sp(FP)IvIP).
To get L**(s,p), we put back in part of that local factor, by
dividing by the subdeterminants

Det (1 - q'sp(FP)IvDP)
for P|p, where we restrict Fp to the part of V invariant under

the whole decomposition group DP. Since FPe DP, we have

p(FP)|V %p . = identity, and so we define

Dp
L**(sp)de(sp)"lT(l A
Plp
For example, if o 1is one-dimensional, this means that we put
back in the Euler factors (1 - q-sp(FP))'l when p(FP)= 1. For
instance, if k =Q, K= Q(Z), ¢ a primitive d-th root of 1,
G = Gal(K/k) =~ (Z/dZ)*, and p corresponds to the Dirichlet
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character ¥, then L*(s,x) = (1-p °x(p))L(s,X), and

[L*(s,x) if x(p) #1,
Lik(s,x) =
L(s,x) if x(p)=1.

The reason for this second modification is as follows. The
D,
subdeterminants  Det (1 -q° p(FP)|V P) of the factors

Det (l -q 5 p(FP)|VIP) that are thrown in to get L*(s,p) bring
in zeros at s=0 of order dim V P. Hence, L*(s,p) has an
mp-fold zero at s=0, where m, = 1§ dim V %, Since Lp(l-n,p@wn)
interpolates the values L*(1-n, p), it is conjectured that
Lp(s,pu)) also has an mp-fold zero at s=0, but this by no means

follows from the mere fact that Lp(s,p) interpolates L*(s,p).

To obtain the coefficient of the leading term of LP(S,D) at
s=0, Gross therefore divides by the factors that conjecturally

give the zeros at s=0,

Thus, the function whose value at s=0 is conjecturally

related to this leading term is

_ I
L**(s,p) = L(s,0) | I'bet (1 -qt p(FP)|V P/vDP),
where, as usual, the product is over all primes P of k over p,
q = NP, and P is some fixed choice of prime of K over P for

each P,

Since L (s,p) 1is only a nonzero function when p is even,
and since its value at s=0 1is related to L(s,p@w-l), if we
replace p by p(Dw we see that Lp(s,p@w) at s=0 should
be related to L(s,p), or rather L**(s,p), for p an odd

representation.

For an odd representation p, Gross defines (A stands for

"algebraic part"): D

: P

d

A = w0 T T, 0,
P

where the product is over all primes P of k over p, DP is the
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decomposition group of a prime P of K over P, and f_ is the

P
residue degree [0/P: Fp], where 0 1s the ring of integers of k
(fP should not be confused with the residue degree [0/P: Fp] of
P, or with the relative residue degree [0/P: 0/P] = #DP; in any

case, this product term is just 1 1if k = Q.)
Without further ado, we can finally state Gross's main conjec-
ture.

Gross's second conjecture. If p: Gal(K/k)=>Aut(V) is an

odd representation in a finite dimensional Qp-vector space V,

D,
then Lp(s,p@w) has a zero of order exactly o, = ZdimV P at
s=0, and

-m
o s P11 (s,p(®w)
s=>0 P

RP’GmSS(p) A(p).

4. Gross's conjecture in the abelian over Q case

We now prove this conjecture when k = Q and G = Gal(K/Q) 1is
abelian. The conjecture is unproved in essentially any other case,
even, for example, when k = Q(vD) and K/k is abelian. Without
loss of generality we may suppose that K = Q(Z), < a primitive
d-th root of 1, since any abelian extension of Q is contained
in such a K, and all of the expressions in the conjecture remain

the same if K 1s replaced by a larger field. We first prove:

Proposition. Gross's first conjecture holds in the abelian over

Q case, i.e., LOGQ is an_automorphism of @Qp (P-P).

P
Proof. It suffices to prove that LOGQ is an automorphism

P
when we extend scalars from Qp to £ . (We want to go to an
algebraically closed field, so that we can decompose by the action
of characters of G = Gal(K/Q) = (Z/dz)*.) Thus, we shall show that

LOG: E@Qp——>®9p r-F)
ep—> ) In (Np(e)) P-P 4.1)
p P

is an isomorphism, where the sum is over primes P of K over p,
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one from each complex conjugate pair. (Recall that NP(e) denotes
NKP/Q (d(e)), where ¢ 1s any imbedding KC—>QP for which P =

{er? |¢(x)|p< 1}.)

G acts on both E@Qp and @Qp (P-P), and we have seen
that LOG 1s G-equivariant. Let us decompose both sides by
characters X of G. It is easy to see that the Yx-component of
each side is at most one-dimensional; 1t is nonzero if and only if
X 1s odd and X(p)=1. In that case the ¥-component (E@Qp)x

is spanned by e z ;(n)on(e), where e = a/a 1is a p-unit with

x def
(o) ='Ph; and (@Qp (P-F))X  is spanned by I X(n)P"®, where
P is any fixed prime ideal of K over p. It therefore suffices
to show that LOG(eX) # 0.

If we denote G = (2/dZ)*, D =Dp = {p’} c G, and £ = #D,
then by (4.1) we have

- (o} (o}
L0G(e ) = 2f X(m In N (0 () (P-Pm
X m;;/ﬂ nezc/in Ppon ®

s} (o}
2f X x( I N g, e P -PM (=D
n,jZG/iD p P o

B (nezc/ip x(n) 1ﬂpNP0n(e)) (nZG X () (Pon-ﬁon))_

If this is zero, then from the p-adic Baker theorem (see §2) it
follows that lnp of the algebraic numbers Npon(e) must be

dependent over Q. For brevity let e, denote the product
-1 -1 =
i on (te) taken over all TeD, so that NPOn(e) NP(on (e)) =
¢(en) for ¢ any fixed imbedding KG->QP for which P = {xe0]
| ¢ () |p< 1}. Thus, for some m €Z not all zero we have
In <¢( | I el_:nn)) = 0.
PV \neG/sD

m
This means that Hen“ must be a power of p times a root of unity;

m
replacing o by a suitable multiple, we obtain Hen“ = pr for

m
some reZ. But the ideal decomposition of Hen“ is
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-lm

<"IT (Po‘-‘l/Fo“ ) r>hf.

neG/+D

O.\¥
while (p)r = ( | I 4 n) . This contradiction proves the
neG/D
proposition.

It is curious to note the resemblance between this proof and
the proof of Leopoldt's conjecture for K/Q abelian: 1in both cases
the key step was to use the p-adic Baker theorem to conclude from
the vanishing of a character sum that certain units are multiplica-

tively dependent.

Theorem. Gross's second conjecture holds in the abelian over

Q case.

Proof. Again k =Q, K=Q(), ¢ a primitive d-th root of
1, G = Gal(K/Q) =~ (Z/dZ)*. Since any representation of the abelian
group G decomposes into a direct sum of one-dimensional characters,
and since both sides of Gross's conjecture can readily be verified
to be multiplicative with respect to direct sums of representations,
we can reduce to the case when o is one-dimensional, i.e., is a
Dirichlet character p: G = (Z/dZ)*——>Q*. (We shall continue to
use the letter p for this Dirichlet character, rather than Y,
since the letter X will soon be needed to denote a completely
different kind of character, namely, a character of the multiplica-

tive group of a finite field.)

Now there are two cases, depending on whether or not p 1is
trivial on the decomposition group D = DP = {pj} G (P a prime
of K over p), i.e., we must consider: case (i) p(p)#1, m, =
dim VD = 0; and case (ii) p(p)=1, m, = 1. Without loss of
generality we may suppose that d 1is the conductor of p; other-
wise, p factors through Gal(Q(Z')/Q), where 7' 1is a primitive
(cond p)-th root of 1.

Case (i) m, = 0

i = = *k = L% =
In this case Rp,Gross(p) 1, A(p) = L**(0,p) = L*(0,p)
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= (1-p()) L(0,p), and Gross's conjecture says that
Lp(O,Dw) = L(0,p) (1-p(p)),

which is true (see §II.4); in fact, both sides equal -(l-p(p))Bl o
£

We also know that this expression is nonzero (since p is odd and

primitive, and p(p) #1), in other words, the order of vanishing

of Lp(s,pw) at s=0 is mp=0.

Case (1) m=1, i.e., o(p)=1
This is the more interesting case.

We first compute R

p,Gross(p)' Let ¢: Kh»Qp be a fixed

imbedding, so that P = {xe0| |¢(x)|p< 1} denotes a fixed prime of
K over p. As before, let D= Dp = {pj} c G = (Z2/dZ)*, and let

f = #D. The one-dimensional vector space (V@ X)G is spanned by

z p@P’ ex= @ o -,
geG/D ceG/+p P
Recall how LOG was defined on such an element. Let ph - (@),
Since ((a/&)o) = (p/ﬁ)h for o0eD, it follows that /& and
(0/@)° for oeD differ by a root of unity (since their quotient
is a unit of K with complex absolute value 1). The image of the

divisor p(o) P° under the isomorphism ¢ is (see (3.3))
g€G/D
LS @ @ 2
oE p@) (/@) ¢ EQQ,
o€ G/4D

and, since

- - - -.ot-1
Npr (@D = N 0 o™ @@ = o (@@ ) Ferooe of 1),

KPT/QP
it follows that
we( D p@ ) =-E D o D imN (@@ P
o€ G/D 0 € G/4D TeG/D Pp (see (3.5))

-1
1 E - 0T T
p(0) lnp¢ ((Ot/ot) ) p

h 0eG/4D, TeG/D

1 T =G
- o(t) P Z e(0)In_¢((a/a) )).
h(rZG/D )(Je /4D P
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Hence

1 g
© = z P(9) In ¢ (),
g€ G/D
where o 1is any generator of the ideal ph

Rp Gross

Gross's conjecture asserts that

L;(O,ow) = Rp,GmSS(p) Ap),

where A(p) = L(0,p) = -Bl,p.
We now use the following results from earlier chapters:

(1) the formula for LI'D(O ,pw) 1in §II.8

L'(0,pw) = z p(a) ln I‘ (a/d);

p 0<a<d

(2) the p-adic formula for Gauss sums in S5III.6, which, after

we take In_  and use the fact that lnp‘ll' = p—_]:].lnp(-p) =0, gives

<

in g(X .w °Tr) = 2, In T (<ab/d>)
P beD
(see S§III.6 for notation; here Xa is a multiplicative character

of a finite fileld);
(3) Stickleberger's theorem (S5III.7), which tells us that

the ideal decomposition of g(i;l,\b“oTr)d, written additively, is

(¢
z <a/j>d 4 3, where < ) denotes least positive residue mod d.
€G
We conclude that

L' (0,pw) = p(a) in T (<ab/d>)
P aezG/D bZ’D PP

=1
= p(a) In_g(X_ ",y °Tr)
aezG/D p- e T

. p(a) <a/j>, 1n 0@ 73y
an aZ’G/D jZ’G

(where ph = (a) as before)

- D o(al3) <als>40(3) ino(a™)

a,j €6
1
= == ap(a) p(0) In ¢(0t )
dnf 0<Z<d OZG
- (‘%1 z ap(a)) (—% z 0(0) 1n ¢(a°)),
0<a<d 0eG/D P
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which is precisely (~B. ) (), as desired. Q.E.D.

i,p Rp,Gross

The above proof of Gross's first and second conjectures in the
abelian over Q case is Gross's variant of Ferrero-Greenberg's
original proof in [29] of the simplicity of the zero of Lp(s,pw)
at s=0, The proof relies in an essential way upon several basic
and diverse p-adic results: Brumer's p-adic Baker theorem, the
formula relating L;(O,pw) to special values of the p-adic gamma
function, Stickleberger's theorem, and the p-adic formula for

Gauss sums, With -this proof we conclude the main part of the book.

119



APPENDIX

1. A theorem of Amice-Frésnel

N
The measure M, on ZD defined by uz(a + pNZp) = za/(l-zp ),
which was used to study p-adic Dirichlet L-functions in Chapter II,
can also be used to give a simple proof of the following general
fact.
Theorem (Amice and Frésnel [4]). Let £(z) = Zanzn € Qp[[z]]

have the property that the coefficients a can be p-adically

interpolated, i.e., there exists a continuous function ¢: Zp—»Qp

such that ¢(n) = a . Then f (whose disc of convergence must be

the open unit disc DO(l-)) is the restriction to Do(l-) of a

Krasner analytic function f on the complement of Dl(l-)' In

addition, f has the Taylor series at infinity

£(z)

- z ¢(-n) 2 1, |z > 1.
n=1 P

Proof. Define

j¢duz°

Then on Qp - Dl(l-), the function f is the uniform limit as

£(z)

N —> of the following rational functions with poles in Dl(l-):

zl‘l
> g o ——
O<n<p 1 - zP
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(see (2.3) of §1I.2). Hence f is Krasnmer analytic on Qp-Dl(l-).

N
Next, for |z| < 1 we have 1im 1/(1-zP ) = 1, and so
P Nedc0

f(z) = lim z o(n) 2" = f£(2).
Ne-do0 0511<pN

Finally, if |z|p > 1, then we have

n -n
z N¢(n)l—zpﬁ = z N¢(PN-n)‘—z—

O<n<p -z 0<n<p z

—- 2 ¢C¢n) 2"
n=1

as N——>» , and the theorem is proved.

2. The classical Stieltjes transform

The Stieltjes transform of a function f£: [0,®)——>C is

G(z) = dx (2.1)

for all z such that the integral converges. (More generally, one
can replace f(x)dx by dF(x) and define the transform of that
measure to be the corresponding Stieltjes integral.) Usually f£(x)
is a rapidly decreasing function, and the integral converges for
all z € C - (—=,0]. The Stieltjes transform is the square of

the Laplace transform L:

L(L(D) (2) = I J”(f e'“‘f(x)dx>dt

0 0
[f00 [ @t ax - [ £ gy,
0 0

+
Ox z

It has been used extensively in the study of continued fraction
expansions of analytic functions (this was Stieltjes' original

purpose), numerical analysis, and quantum mechanics.

The function f need not be rapidly decreasing in order for

the Stieltjes transform (2.1) to exist. The Stieltjes transform
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also converges for z ¢ (-»,0] if f: [0,»)—C is a periodic

function satisfying the conditions

(1) f(x+d) = £(x); (2.2)
(2 £ e tro,an; (2.3)
d
3) f f(x)dx = 0. (2.4)
0
This is because
® nd
f(x)  £(x)
|6(z2)| = - dx by (2.4)
| =1 (n-l)d(x+z nd )
® d
const
_— f d o,
< nZl (nd)2'£| (x) |dx <

where "const" depends on z but not on n. It is periodic f
that we shall be particularly interested in from a number theoretic

point of view,

We may suppose that in addition to (2.2)-(2.4) the function
f: [0, 0)mmmaad-C gsatisfies

(4) f(x) =0 for x < 8§ for some positive 6. (2.5)

Example. Let X be a nontrivial even (i.e., ¥(-1)=1) Dirich-

let character of conductor d. Define

x
£ (x) = 2 x(a). (2.6)
X a=

Then f_ obviously satisfies (2.2), (2.3) and (2.5) (with 6&=1).
To verify (2.4), we compute

d d
f f (x) dx = z (d-a)x(a) = - Zax(a) = —dBl =0
0 X a=1 a=1 X
for ¥ even. (If X were odd, we would have to add the constant
Bl X to fX' and (2.5) would no longer hold; for simplicity in
*

the discussion below, we want to assume (2.5).)

Suppose that f: [0,%)——C satisfies (2.2)-(2.5). Then
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(2.1) converges for z ¢ (», -8]. For |z| < §

we expand
z )" I £(0)x ™ Tax., Q2.7
n=0

0

Note that the "negative moments" I £G0x ™ Lax

0
integrals, and are easily seen to be O(s-n)

are convergent

8§ Ne———-0 So

(2.7) is the Taylor series of G(z) in |z| < §.

In our example f , we compute for s>0

L z X&) _ L,
S 1 kS s *

Thus for f = fX we have

G(z)mlm.l'_(.S_zXl+ EM(Z)“

-z), |z|<1. (2.8)
s=>0 s n=1 n
Returning to the general situation, suppose that f£: [0,®)
—»C satisfies (2.2)-(2.4) (not necessarily (2.5)). Define

£ t5 be the integral of f with constant of integration

d
chosen so that f f(-l) (x)dx = 0; thus, if f 1is represented by
0

the Fourier series Zanezwinx/d, with ao=0 because of (2.4),

then f(-l) has Fourier series z —u 21r1nx/d

21r1

- l)
f(—j-l) inductively as ( - j))

Then define

3=1, 2, v .
We obtain an asymptotic series for G(z) as

z=— ® (along

any ray other than the negative real axis) by integrating by parts:
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T (-1) [ gD
I £€9) - £ 0 A €9) = eee
G(z) —'!; x+z dx = z + ‘Lmz—)z—dx =

e (Pe L e Pe

z 22 . zj
(-n) ? (-0
et n!If (-t)l dx
2" 0 (x+z)™

for any n. For fixed n, 1if =z approaches infinity away from
the negative real axis, then it is easy to see that the integral
term is Q (z-n-l). Thus, -z (n—l)!f(-n) 0 2™ is an

asymptotic series for G(z).

For example, if f = fX (X a nontrivial even character), we

have the easily computed Fourier series expansion

[x]
fx(x) = zz x(a)

a=1

= z a e2"1“z/d, where a =—3L@
nf0 O n

(here By = z x(a) Q2mald o the Gauss sum for x). Then

O<a<d ;
Doy - () Y Y
n#0 n (2mi) n#0 n
aly -
) (2“1)j+1 2L(j+1,%x), j odd;
0, i even
= f? L(-3,%)

by the functional equation for L(s,X) (see, e.g., [41], p. 104).
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Thus, for f = fX we have

n n
@~ -y T L > e el SO )
4 j=1

j=1
(since L(-j,X) = 0 for j even).

Comparing (2.8) and (2.9), we see that we have established a
speclal case of the following theorem of Mellin-LeRoy (see [65],
p. 109, 113).

Theorem. Suppose ¢(s) 1s a function which is holomorphic and

bounded on Re s > 0. Then the Taylor series G(z) = §£¢(n) 2

extends holomorphically onto C~ [0,%) and has asymptotic series

G(z) ~ -Z¢(-n)z ™ as z=———> (along any ray other than the

positive real axis).

L(s,X%) (which is bounded even as

In our example ¢(s) = é

s=—»0, since L(0,X) =0 for ¥ even and nontrivial), and we

have replaced z by -z.

Remarks. 1. This theorem is the classical analog of the p-adic

theorem of Amice-Frésnel in §1.

2. Under a weaker assumption on ¢(s), namely, bounded expo-
nential growth, one has the same conclusion, except that not only
[0,9) but a whole sector |Argz| < 6 must be excluded from the

region where G(z) 1is defined.

3. When f = fx, G(z) is a "twisted" (by X) log gamma

function, 1In fact, we have

Proposition. Let ¥ be a nontrivial even Dirichlet character,
and let f be defined by (2.6). Then the Stieltjes transform G

of £ is

r f;zfl ii z+a
L S dx = Z x(a) logI’(T). (2.10)
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Proof. Let G(z) be the left side of (2.10). Then

nd £ (%)
G(z) = lim f—xL—dx
0

. +z
dn-1 h)
= lim z (<1og(z+j+1) - log(z+j)) Z x(a))
n—»® =0 a=
dn-1
= lim - z log(z+3) x(3)
n=—>» o
= 1lim zlx(a) 21og(z+dj+a)
n=-co =
d n-
= lim z (a) Ellog(z:a+j).
=  a=] =0

On the other hand, using the standard formula

(n~1)!I'n
I(z) = nii;mw z(z+1)***(z+n~1) "’

we see that the right side of (2.10) equals
n-1

lim z x (a) (log(n-l)! + = d 1ogn - ZIOg Z;a+j)),

n=>co a=l
and the first two terms vanish, because Ix(a) = Zax(a) =0 for

X mnontrivial and even. This proves (2.10).

4, If yx 1is odd or the trivial character, then, in addition to
the Stieltjes transform G(z), the asymptotic series for the
twisted log gamma function on the right in (2.10) also includes
a principal term. For example, in the case of the trivial charac-

ter, we have the "Stirling series" (see [97], p. 261)

T(z) 1 J’ x-[x}~1/2
log VI (Z-E)logz-—z- x4z dx.
e21r1nx
Note that for the trivial character we take f (x) = )
triv 2min

=-Bl(x) = [x]-x+ % In other words, the Stieltjes transform of
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the first Bernoulli polynomial gives the error in Stirling's formula
n
n! N Jorn 2,

n
e

5. As mentioned before, the classical Stieltjes transform can
be defined more generally for a Stieltjes measure P = dF(x) on
the positive reals. For example, if X 1s a nontrivial even
Dirichlet character of conductor d, then the derivative of

d dn-1

z x(a) log I‘(“a) = - lim ZX(j) log(z+3)

a=] n—>o =0

(see the proof of (2.10)) is

-1 wdf
i di xa o [ &2
o 120 z+j 0 x+z

where fX is the function (2.6), i.e., de has point mass X(j)
at j. Thus,

iz 2 x(a) log I‘(z;a) = - i‘) Eﬁ)— (2.11)

X+z

This formula can also be obtained by differentiating (2.10)
under the integral sign and then integrating by parts:

d
(x)
4 zta) _X___
iz 521 x(a) log I‘( 3 ) ‘([) (x+z) dx
£ ® Tt T as
(x) -,[ (x) . _J' (x) .
X+z 0 0 X+z 0 X+ z

The formula (2.11) is closely analogous to the formula for the
derivative of the twisted p-adic log gamma function (see (8.6) in
Chapter II). More precisely, define the p-adic log gamma function

twisted by a nontrivial even character X as follows:
d

Gp,x(z) def azl x(a) Gp(z:l-a)




) x(@ (252 +3) (n (2524 9) -9)

N0 0<a<d, 0<j<p™
1 .
o —— z X(@) (2+3) (in_(2+3) -1).
n—» dp 0<3j<dp" P
Then G can be expressed in terms of G E(z) = lim Ln
PsX P n=>c dp
2 (z+3) (ln (z+3) -1), where €d=l, E41, as follows:
0<j<dp” Py
G, (D = i‘dl PRTCK: NOR
P b=1 P d
where &£ 1is a fixed primitive d-th root of unity and gx = z
a=1
a
x(a)t = d/ g;(- So if we define a measure ux on Zp by
d ab
u =§X x()u ., where u (a+pNZ )=€——, (2.12)
x d b b P bpN
b=1 E E 1_5 P

then we have

GP;X(Z) = - ) lnp(x+ z) dux(x);

2 ’ du ()
4 z+a) _ _ [0
dz 521)((5) Gp( d ) T i[ x+z °

P
which is the p-adic analog of (2.11).

Final remark. In the classical case an integer a prime to
d has point mass d
Ex_ = ab
df_(a) = x(a) = Fi x(b) £, (2.13)
X b=1

Compare (2.13) to (2.12). As in our discussion of Leopoldt's for-
mula for Lp(l,x) in §II.5, we see that the p-adic construction
is formally analogous to the classical case inside the open unit
disc (in (2.12) note that u b(a+pNZp)—>£ab as N————> ),

but the p~adic case only becomes arithmetically interesting when
we extend to roots of unity, which are on the "boundary” of the

unit disc.

In the remaining sections we shall give a systematic account of
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the p-adic Stieltjes transform, following Vishik [95]. First we
introduce a type of p-adic integration (not to be confused with the
type used in Chapter II) which is the tool used to construct the

inverse Stieltjes transform in the p-adic case.

3. The Shnirelman integral and the p-adic Stieltjes transform

A p-adic analog of the line integral was introduced by
Shnirelman in 1938 [88]. It can be used to prove p-adic analogs
of the Cauchy integral theorem, the residue theorem, and the
maximum modulus principle of complex analysis. The main applica-
tions of the Shnirelman integral are in transcendental number
theory (see [1], [17]). Our interest in it will be to construct

the inverse Stieltjes transform.

Definition. Let f(x) be an Qp—valued function defined on
all x e Qp such that |x-a|p=r, where a e Qp and r is a
positive real number., (We shall always assume that r 1is in

|Qp|p, i.e., a rational power of p.) Let T ¢ Qp be such that

|I‘|p = r. Then the Shnirelman integral is defined as the following

limit if it exists:

. 1 2
= ' -
I f(x)dx &t lim : f(a+ET),
a,T n—>-c0 £“=1
where the ' indicates that the limit is only over n not

divisible by p.

Lemma 1. (1) If I f(x)dx exists, then
a,T

|j f(Odx| < max £ .
a,T P X~-a p=r P

(2) I commutes with limits of functions which are uniform
a,l

limits on {x| |x-a|p=r}.

(3)If r. <r<r

1 and f(x) 1is given by a convergent Laurent

2
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0

series z c:k(x-a)k in the annulus r_ < |x-a] <r , then
= & _— 1 P 2 _—
f(x)dx exists and equals ¢ In particular, the integral does

0

a,T

not depend on the choice of I' with |I| =r or even on r, as
P

long as T <rg Ty More generally,

I f(x) (x-a)-k dx = ¢

a,l’ k

The proof of the lemma is easy. Part (3) uses the fact that if

k#0, then 2 £k=0 for n> |k|.
o
£ =1

Lemma 2. For fixed z € Qp and for m>0

dx ’0 if |z-a|_<r;
<X - ir P

a,T' (x~z)"

(a-2)™ if |z-a|p>r.

To prove this, note that for |x-a|p =r we have the Laurent
expansion

(kz (z-a)* (x—a)-k'l)m if |z-a|p<r;
1 =0

™ m
(x-2) (L z (z-a) 7K (x—a)k) if |z-a| >r.
a-z o P

(3.1)

Then use part (3) of Lemma 1 (with rl=r2=r).

Lemma 3. (1) If f£(x) is a function on the closed disc of

radius r with center a, 1i.e., f: Da(r)——>9p, and if
00

f(x) = z c:k(x-a)k with rk|ck|—>0, define ||f||_ = max
k=0 P ook

rk|ck| . Then max |[£(x)|_ is attained when |x~a|_ =r and
P xeDa(r) P P

equals ||f||r .

(2) Any Krasner analytic function f° Da(r)—-—>9 (i.e., f

is a uniform limit of rational functions with poles outside Da(r))

is of the form in part (1), i.e., is given by a power series.
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Proof. Making a linear change of variables, without loss of
generality we may assume that a=0 and r=1. Multiplying f by

a constant, we may also suppose that || £|| L = max |c:k|p =1, Clearly

k - - k =
|f(x)|p = |chx | €1 for xe Do(l). Let f(x) =2 X € Fp[x]

be the reduction modulo MQ , the maximal ideal in Qp. If x €
Do(l) is any element WhOSZ reduction mod MQ is nonzero and is
not a root of the polynomial f, then |x|pp=l and |f(x)|p=l.
This proves part (1).

It follows from part (1) that, if fn is a sequence of rational
functions approaching f uniformly, and if each fn is represented
by a power series on Da(r), then the sequence of power series
approaches (coefficient by coefficient) a power series which
represents f on Da(r). Thus, it suffices to consider the case
when f 1is a rational function with poles outside Da(r). Again
we make a change of variables so that a=0 and r=1. Using
decomposition into partial fractions, we reduce to the case f(x)=
(x-b) B°L |b|p>1. But

(-]
k
. -m~ -m~ +
(3-b) m~1 _ (=b) m~1 z (kmm) (g) ,
k=0
which converges on Do(l).

Lemma 4 (p-adic Cauchy integral formula). If f is Krasnmer
analytic in D (r), and if |I‘|p=r, then for fixed z e Qp

f(x) (x-a) dx
X-z

’f(z) if |z-a|p<r; 5.2
3.2

a,T if |z-a|p>r.

In particular, this integral does not depend on the choice of a,

T, or r as long as |z-a|p remains either <r or >r. More

generally,
1 @

= (z) if |z—a|p<r;

£(x) (x~a) ax

= (3.3
a,rl (x—z)mH' 0 if |z-a|p>r.



Proof. By Lemma 3 and the linearity and continuity of both

sides (part (2) of Lemma 1), we reduce to the case f(x) = (x-a)m,

2 (k"]')(z-a)k"m"]'(x-a)"k if |z-a| <r;
1 |t " P

(e-2)™ o+l N ktm ~k-m~-1 k
(-1) z ( ) (z-a) (x-a) " 1if |z-a|_ >r.
k=0 ™ P

Then write

Now use part (3) of Lemma 1 to conclude (3.3).

Lemma 5 (p-adic residue theorem). Let f£(x) = g(x)/h(x), where
g(x) 1is Krasner analytic in Da(r) (i.e., by Lemma 3, a power

series) and h(x) is a polynomial. Let {xi} be the roots of h

in D_(r), and suppose that all |xi-a|p are strictly < r.

Define res f to be the coefficient of (x-xi)-l in the Laurent
i

expansion of f(x) at X Then
j f(x) (x-a) dx = E res_ f.

X,

a,Tl i

Proof. Using the partial fraction decomposition of 1/h(x),

we reduce to the case h(x) = (x- xi)m"-l. Then use (3.3) with f(x)
replaced by g(x) and z replaced by x5 .
The next lemma will be stated and proved in the form we shall
need it, although some of the assumptions can be eliminated (the
D, can have different radii, and £(x) can approach a nonzero

i
finite limit at infinity).

Lemma 6 (p-adic maximum modulus principle). Let £(x) be a

i

open discs of radius r. Further suppose that f(x)—>0 as |x|p

Krasner analytic function on Qp- UDi, where D, = D, (") are
i

——>w®, Then |f(x) |p reaches its maximum on the boundary,
i.e., if |f(x)|p <M for all x with |x-ai|p=r for some 1,

h f(x <M for all xe £_~- UD,.
ten|()|p_ x pUi
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Proof. By the definition of Krasmer analyticity, we immediate-
ly reduce to the case where f(x) itself is a rational function
with poles bj € UDi.
all 1. We must show that |f(z)'p < M. Choose r

Let z € @ be such that |z—ai|p>r for
2 large enough

so that Do(rz) = Dz(rz) contains z and all of the D, and so
that |f(x)|p <M for |x|p=r2. Let |I‘2|p=r2. By part (1) of
Lemma 1,
| f f(dx|_ < M. (3.4)
z,[ P
*72
On the other hand, by Lemma 5,
I f(x)dx = Zres&
X~z
z,FZ
_ f(x)
= f(z) + zj resbj P (3.5)

Now let |I‘|p=r. By Lemma 5, for each i

£(x) _ j X~-ay
2w, 58 [ e X,
€1 J i®

Since |x—z|p > |x-ai|p for |x-ai|p=r, it follows by part (1)

of Lemma 1 that for each i

res £(x)
b e bj X-z
11 P

Combining this with (3.4) and (3.5) gives |f(z)|p < M.

< max [£(x)|_ < M.
|x-ai =r P
P

This concludes the basic lemmas relating to the Shnirelman
integral.

Let OCQP be a compact subset, such as Zp or Z;. Let
g = Qp-o be its complement. For z € 0 let dist(z,0) denote
the minimum of |z-x|p as X ranges through 0.

Let Ho(a) denote the set of functions ¢: 5——>Qp which
are Krasner analytic and vanish at infinity, i.e.,

(1) ¢ 1is a limit of rational functions whose poles are con-
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tained in O, the limit being uniform in any set Bo(r) St {zer|
dist(z,0) >r L
(2) lim ¢(z) = 0.
|z| ==
P
Remark. Strictly speaking, to say that ¢ is Krasner analytic
on 0 a priori means only that for every r>0 it is a uniform
limit on Bo(r) of rational functions ¢ with poles in Do(r')
{z e Qp | dist(z,0) <r}. But if, for example, ¢n(z) =1/(z-b)
—a)J
1<r for some ae0, then ¢n(z) =1 _(b__a)_+l_
_ I (z-a)d
can be approximated uniformly on Do(r) by a rational function

def
with |b-a| _=r
P

vith pole aco. Similarly if ¢ (2) = (z-b)™; and any rational
function ¢n can be reduced to this case by partial fractions.

Thus, the poles of ¢n can be "shifted" to 1lie in o.

2
Examples. 1. Since d (z+3)(In_(z+3j) -1)) = we have
az? P

z+3’

d2 -n
—5 G (z) = 1lim p z

e H (Z),
-0 0<j<p 0"

1
nz+j
where Gp is Diamond's p-adic log gamma function, see (7.4) in
Chapter II. (It is not hard to show that the construction
lim p "L £(z+3) discussed in §II.7 commutes with differentiation
when f 1is locally analytic.)

2. For any fixed E#Dl(l-), the first derivative of the
twisted log gamma function Gp (see (8.1) of Chapter II) is
b

already Krasner analytic, since, by (8.6) of Chapter II,

du, (%) 3 —
Lo (=-)]-t"-- 1 L e H.(Z).
dz £ x+z z+ 0
Ps z N Oga<pM 1 1-¢P P

P
3. If u is any measure on Zp and f(x) eHo(Ep), then it is
not hard to check that g(z) = If(x-z)du(x) € Ho('Z‘p). In other
Z

words, Ho(fp) is stable under bomvolution with measures on Zp.

The function ;_z Gp 5(-2) in Example 2 illustrates this.
*
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For r>0 the set Do(r—) is a finite (since O 1is compact)
disjoint union of open discs of radius r: Do(r-) =VUp, (xr’). For
i

example, if 0 = Z and r=p-“'l there are pn+l such discs.
P

Similarly, Dg(r) af {zer| |z-a|p5r for some ae€0} is

a finite disjoint union of D, (r), aieo.
i

Recall the definition D _(r) = Q -D (r") = {zeQ z-a| 2r
n By() = @ - D) ARESE

for all aeol,

For ¢eﬂ0(c-1) iet max |¢(z)|p. Obviously,
)

loll, gz m
r def 2D, (x
II¢IIrl 2 |loll, if r <r. By Lemma s,

el = max  [¢(2)] .
¥ dist(z,0)=r P

We introduce a topology on Ho(a) by taking as a basis of open
neighborhoods of zero

uG,o = ol ol <},

Note that ||¢)||r is a continuous decreasing function of r.
To see continuity, one easily reduces to the case when ¢ 1is a
rational function with poles in 0, and then by partial fractions

to the case when ¢(x) = (x-a)”®, in which case it's obvious.

We next introduce a space of functions which will play a dual

role to HO(C-I) via a pairing defined using the Shnirelman integral.

Let
- = . —
B =3B.(0) 4= {f: D (x) Qp| f 1is Krasner analytic on
each Dai(r) €D (r)}.
By Lemma 3,

Br = {f| on each Da (r), f 1is given by a convergent power

——() as

series |c:{_j |p

chij (z-ai)j, i.e., rj

j=—>o for each 1},

If ¥, <r, then restriction to Dd(rl) gives an imbedding

135



B, <—>B_. We demote L(0) = LJB,. By definition (see the
1 >0
beginning of §II.7), L(0) 1is the set of locally analytic functions

on 0,

For feBr we set

£l 43¢ max le, ] ¥
r def 1,5 ij'lp”
which is finite by definition. By Lemma 3, ||f]|_ = wmax [£(2)]_ .
¥ zeD _(r P
g
Note that the inclusion BrC—>Br for r1<r is continuous
with respect to || ”r in B and I ||r1 in Brl.

Let L*(0) be the set of continuous functionals on L(0) =

UBr’ i.e., the set of linear maps M (compatible with the re-
striction B <-B ) such that for all r

lull, jz¢ max [u® | /€]l

r def O#feBr ] r
is finite. Note that ||u||r 2 ||u||r if r <r. We do mot re-
1

quire that ||u||r remain bounded as Y=—>0.

Key example. Let u be a measure on O, i.e., a bounded
additive map from compact-open subsets U of 0 to Qp. As in
the case 0 = Zp (see §II.2), the map

u: fk-—»é[fdud;f l;.mZ fj(Uij) u(Uij) (3.6)

(where f, 1is a sequence of locally constant functions which
approach f uniformly, and the Uij are compact-open sets on
which f_ 1is constant) is a well-defined functional on the

3

continuous functions on 0, and a fortiori on L(0).

Lemma 7. pel*(0) comes from a measure on O if and only if

||u||r is bounded as r=—>0.

Proof. Using (3.6), it is easy to check that 1lim [[u|| =
r=—>0 x

max |u(U)|p < o whenever [ 1is a measure. Conversely, suppose
U
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pel*(0) has ||u||r < M for all r, Define a function, also

denoted yu, on compact-open subsets U of o by
u(U) = p(characteristic function of U).
(Note that any locally constant function is in Br for r small.)
u 1is obviously additive, and |u(U)|p < ||u||r- [|char £n of U||r
= ||u||r < M for all U. This proves the lemma.

Choose T with |1"|p=r, and define

z-a,\J
£,. (z2) = (—i) restricted to D_ (xr). (3.7)
ij,r r a;
By Lemma 3, B, is the set of all series f =1I cij fij,r with
cij 0 as j o for each of the (finitely many) 1, and
f = max |c . For L*(0) clearl
lell, = max leygl,. Tor weis@ cleardy

llull, = max [ucE,, D .
L ij,r"'p
It can then be shown that the weak topology in L*(0), which has
basis of neighborhoods of zero
Ve e it {u] |u(f)|P < e}, (3.8)

is equivalent to the (a priori stronger) topology having basis of

neighborhoods of zero
V(r,e) 4=¢ {u] ||u||r<e}. (3.9

We shall prove this in the next section as a corollary of a general

lemma on p-adic Banach spaces.

We shall often denote u(f) by (u(x), £(x)).

Definition. For uel*(g) the Stieltjes transform Sp: g——

Q 1is the map

$: zb———> (u(x), ﬁ). (3.10)

We write ¢ = Su.

Note that (3.10) makes sense, since for fixed z¢o, we have
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= € Br(o) as soon as r < dist(z,0).

Remark. If U comes from a measure on O (also denoted u),
then
Su(z) = IM .
G Z-%
This is slightly different from our earlier use of the term "Stiel-

tjes transform” for the dlog gamma type functions %G; namely,
d
d_ZG(z) = Su(—z).

Definition, For ¢e HOG) the Vishik transform V¢ of ¢ 1is
the functional on L(0) =UBr defined by
Brs f — z jd)(x) f(x) (x—ai)dx, (3.11)
i a,,T
i
where this integral is the Shnirelman integral defined at the
beginning of the section.

Lemma 8. (3.11) does not depend on the choice of centers a

i
or the choice of T with |1"|p=r, and it is compatible with

the inclusion B, G—»Brl for r <r.

Proof. For fixed f, the right side depends continuously on
¢ (with respect to ||¢||r), so we may reduce to the case when ¢
is a rational function with poles in 0, In that case, by Lemma 5,
the right side of (3.11) is simply I res($f), and the lemma

follows.

Remark. A function ¢ eﬂo(a) and a function feB (0) have
an annulus around O as a common domain of definition. The pair-
ing (9,f) = Vo(f) can be thought of as a pairing which evaluates
the sum of the residues of the product. For example, if 0 1is
simply the point {0}, then ¢(x) = z b xm, f(x) = z c x",
and m<Q T n>0 1

(¢,£) = coefficient of ’-]; in ¢ (x)£(x) =m+;‘lbmcn.

Theorem (Vishik). V and S are mutually inverse topological

isomorphisms between Ho(a) and L*(0). Under this isomorphism
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the subspace M(0) < L*(0) of measures on O corresponds to the

set of ¢eHy(0) such that r[¢||, 1is bounded as r—0.

Proof. Step 1. Sueﬂo(a), and S 1is continuous.

Notice that for fixed zeso(lr) and for r1<r and |1"|p=r1,

the image of in B is z (z-a) 371103 ¢ (x) (where
T i3 i 1j,r1

-x

. . Th . .
fij,rl was defined in (3.7)) en, since |(u’f1j,rl)|p < ||u||r1
'“fij,r]_”rl ||u||r1, it follows that

W, =L = 1w D Z——Fj——(u,f )

z-x n—=o 1 j<n (z-ai)jﬂ' 13,1y

is a uniform limit of ratiomal functions with poles a, € g and

value zero at infinity., At the same time we see continuity, since

if uev(r),e), i.e., if llull. <€, then
1

T2 | w2 | S
W) ,=2 | = max |M&),—)| < max —=|[u
z=x" 'y zeDo(r) z=x"'p 1,4 rj+1 T
€
< T’ (3.12)

in other words, SueU(r,e/r).

Step 2. For ¢5H0(c-1), the functional V¢ is continuous,
i.e., V maps Hy(G) to L*(0).

Let feBr(o). Then

[(Ve, )], = IZ ai',[r¢(X) £(x) (x-a)dx|

max max  |¢(x)£(x) (x-ai)|
i |x-a,| =r P
1'p
by part (1) of Lemma 1, But this is at most

r max [d(x) | max |G| = r||¢||r||f||r.
dist(x,0)=r P dist(x,0)=r P

Step 3. V: Ho(a)—*L*(o) is continuous.

If ¢e¢U(r,e), then we just saw that |(V¢),f)|p <re ||f||r
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for feBr. Thus ||V¢||r<r€, i.e., Vdp € v(r,xe).

Step 4. VS = identity.
To see this, let Hel*(0), fe Br(o), and denote ¢ = Su. We
must show that (Vo,f) = (u,f).

We have

z j (z-a; YE(2)d (z)dz

a

z I(Z-B )f(z)(u(x), = )dz.

Since Y 1is linear and continuous, it commutes with the Shnirelman

Vo, )

integral, and we have

Vo,£) = (u(x),Z ff(z)

1’F

). (3.13)

Without loss of generality we may suppose that r¢ {|a—b|p | a, b

€ 0}, 1in which case r, can be chosen less than r but close

enough so that Do(rl) is obtained from Do(r) by merely shrink-
ing each of the discs Da (r) (i.e., no elements of O are lost,

so no new discs have to be added to cover 0)., Now for xe Da (rl)
i
the integral on the right in (3.13) is equal to f(x), by Lemma

to B is
!

the same as the restriction of f£(x). Hence, (V¢,f) = (u,f).

z-a
4. Thus, the restriction of z I £(z) z_idz

Step 5. SV = identity.
Let ¢eﬂ0(6).
We first suppose that z 1is large, say |z|p>r= |1"|p, where

r 1s taken large enough so that oc Do(r) = Do(r). Let a be

00
any point in 0, It is easy to see that ¢(x) = z cJ (x~a) -3-1

for xeso(r) (as in the proof of Lemma 3).

Then

140



Vo @ = (o, L) = [ G-aow ax

a,

.:[Fxcp(x) Z_Lx dx

1 1 1

by the definition of the Shnirelman integral. Thus,

1 1 1
Sy = =
¢ (2) z O;E_/r.‘b(x)x-l/zdx

_ L 19(1/%)
=z ¥e51/2 ’-‘x-l/z

by Lemma 5

= ¢(2).

(Alternately, we could expand ¢(x) =2 c X -3-1 and compute

Vo (2) = z I —dx zcjojl"kz k+1

= cj/zj+l = ¢(z). )

By Step 1, we know that SV ¢ (z) eﬂo(c_r). Since SVo¢ (z) and
#(z) are both Krasner analytic on G and agree on Bo(r), they
must agree everywhere.

Step 6. If p e L*(0) and ¢ = Su, then

lull, = xlloll,

In Step 1 we saw that for any r2>r

loll, <= ol
(We have replaced r and T by ry and r, vrespectively, in
(3.12).) Letting r,—>r and using the fact that ||¢)||r is
continuous in rz, we obtain

v lloll, < Mull,

On the other hand, in Step 2 we saw that |(u,f)|p < rl|sll

||f||r for all feB , and hence ||u||rsr||¢)||r
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Step 7. SM(9)) = {¢e H0(5)| r||¢)||r is bounded}.

This follows immediately from Step 6 and Lemma 7.

The proof of the theorem is now complete.

Remark. Amice and Vélu [5] and Vishik [94] have studied so-
called "h-admissible measures" on O, These are elements | e

L*(0) which instead of boundedness are required to satisfy the

weaker condition

h-j .
r h"(fij,r)lp 0 as r—>0 for all i, j

(fij . is the function (3.7)). For example, when 0 = Zp, j=0,
Ll

and r=p |, so that f is the characteristic function of

ij,r
some a+pNZp, this condition says that |u(a+pNZp)|p grows

slower than th. It is not hard to show that h-admissible meas~
ures P correspond to functions ¢eﬂ0(c_1) for which rh-"]'“(i)”r
approaches zero as Ye——=—3-0,

Even the broader class of h-admissible measures are only a
small part of L*(0). For example, when 0 = {0}, then M(0) 1is
simply the constants, which correspond to elements ¢eﬂ0(c_1) of
the form ¢(z) = Q—}S—t. The h-admissible measures on {0} corres-
pond to the polynomials of degree at most h in 1/z (with no
3

constant term); while L*(0) corresponds to all series chz_
for which r_j|cj|p—>0 as j=—>o for every r.

4. p-adic spectral theorem

We start by discussing p-adic Banach spaces. For a more com~
plete account, see [82]. In the process we fill in a technical
gap in the last section, namely, we prove that in L*(0) the
topology determined by

Ve e = | |u(f)|p < g} 4.1)

is equivalent to the topology determined by
V(r,e) = {y ||u||r < el. (4.2)
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Let K be a field which is complete under a non-archimedean

norm | |p (in practice, K will be a subfield of Qp).

Definition. A Banach space over K 1is a vector space B
supplied with a norm || || from B to the nonnegative real
numbers such that for all x,y ¢eB and aekK: (1) llx]| =0 if and
only 1f x=0; (2) [Ix+yll < maxCllxll,llyll>s (3) llax |l = [a] llx|l3
(4) B 1is complete with respect to || ||.

We shall also assume that ||B|| = |1(| , l.e., for every x#0
in B there exists aeK such that ||ax|| =

By Hom(Bl,Bz) we mean the vector space of K-linear continu-
ous maps from Bl to Bz;
under the usual operator norm. We denote End(B) = Hom(B,B).

Hom(Bl,Bz) is clearly a Banach space

If By is a Banach space over Kyc K, by Bl( = B0®K we

mean the completed tensor product, i.e., the completion of the
vector space B <:>L K.
0 0

Example. 1If B = {f = I cjxje Qp[[x]]l |cj|;--i-0}, with

- - j
ll£]] = max |c | then BQp ={f=1z oyx er[[x]]| |cj|p—>0}.

In practice, most interesting § -Banach spaces B are really

defined over a finite extension K of Qp, in the sense that

B = B0®Qp for some K-Banach space By-

Canonical example. Let J be any indexing set, and let K(J)

denote the set of all sequences c={c,} such that for every

37 3ed

€ only finitely many |c.| are >e. Let [c|l = max |c:j|p
J
Note that 1((.J)€<)Qp = QP(J).

Proposition. Let K be a discrete valuation ring (for exam-

ple, a finite extension of Qp, or the unramified closure of

Qp). Then any Banach space B over K 1is of the form (i.e.,

isomorphic to) K(J) for some J.

143



Proof. Let 0=0K={ael(| |a|p51}, M=MK={ael(| |a|p<1}

{xeB| ||x|]|<1}, E = E/mE. Let {ej}jeJ

be elements of E whose reductions mod TE form a basis for the

=10, k=0/M. Let E

k~vector space E. We claim that B is isomorphic to K(J).

Given xeB, find aecK such that |[ax|| <1. Then for some

{clj }jeJ with |c1j|p'<' 1 and only finitely many ¢y monzero
we have: ax -chjej € TE. Repeating this process for _,lr(ax-
i
Ze,.e,), we successively find ax =ZI (Z7 c,,)e,. Let ¢, =
L Y 510 478 j
Ezwicij’ and let x correspond to {cj}eK(J). Conversely, let
i

every {c,}eK(J) correspond to Zc.e,. It is easy to see that

this correspondence gives an isomorphism B =K(J).
Such a set {ej}C B 1is called a "Banach basis" for B.

Example. The space Br(O) in the last section has Banach

basis fij,r (see (3.7)).

Corollary. If an Qp-—Banach space B 1is defined over a finite
extension of Qp, then B is isomorphic to QP(J) for some J.

Definition. The dual space B* of a K-Banach space B is

Hom(B,K), which is a Banach space with the usual operator norm.

Lemma 1. If B=K(J), then B* is isomorphic to the Banach

space of bounded sequences b = {bj}jeJ with |[|b]| oop max |bj|p'

In fact, if {ej} is a Banach basis, let {bj} be the map
chejl—>2 bjc . It is routine to check that this identifies B#*

with the space of bounded sequences.

Definition. Let B be a K-Banach space. A sequence Xy Xy,
Kgpees is said to be weakly convergent to x if h(xi)—Fh(x)
for all he B*.

Lemma 2. Suppose B=K(J). If x——s-x weakly, then
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Iy = xll—>o.

Proof. Since any countable set of elements of B 1is in the
Banach subspace generated by a countable subset of our Banach basis
for B, without loss of generality we may assume that J 1is the
~x, without loss of

positive integers. Replacing x, by x

i
generality we may suppose that x=0.

i

Suppose ||x1|| does not approach zero. By passing to a sub-

sequence, we may suppose that ||x1|| >€ for all 1i. We identify

B with K(J), and let x, = {aij}el((J). Then ||x|| =m?x|aij|p.
Let oy denote the first j for which |aij|p = | xj_” , and let
Bi denote the last j for which |aij|p = ||x1||

Case 1. oy is bounded.

Then there exists some jo such that ai=j0 for infinitely
many i. Let he B* be the jo—th coordinate map. Then for in-
finitely many 1 we have

= = = >
el = Tagg 1y = lag 1, = lxgll > <
a contradiction.
Case 2. o, is unbounded.
Let
o= %
i = ail, where 1, is chosen so that o, > N
j, =@, , where i, is chosen so that ay > Bi
b 2 h
=0y where 1n is chosen so that a > Bi .
n n n~-1

Let he B* be the sum of the jn-th coordinate maps, i.e.,

h({a.}) = Z a, . Then for all m
| n Jg

Incx = llx,ll >e.

|z a
n m

|a |
j'maim P
and again h(xi) fails to approach 0. This concludes the proof.

i |
ii'e

) =
j'mp n
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Corollary 1. If B=K(J) and {xi}, x,€B, has the property

that h(xi) approaches a finite limit for all heB*, then {xi}

converges in the norm to some x.

Proof. Let y, = By Lemma 2, ||y1||—»0. But then

[
{xi} is a Cauchy sequence (since ||xM-xN|| < mmifu ||x1-x1+1||),

and the corollary follows from the completeness of B.

Corollary 2. The topologies on L*(0) determined by (4.1) and
(4.2) are equivalent.

Proof. Since the V(r,e)-topology is trivially stronger than
the vf,e

converges to zero in the Vf E—topology must converge to zero in
’

~topology, it suffices to show that a sequence Uy which

the V(r,e)-topology. Suppose that for every fe L(0)= l.lBr we
have uk(f)—FO. We must show that for every r, ||uk||r-—'>0.

Without loss of generality we may suppose that r & {|a-—b|p |
a,be a}.

*
For any r, L*(0) maps to the dual B:=QP(J) , where J

indexes the f Namely, ur——>{u(f, )}i 5 and it is easy
’

ij,r”° ij,r

to see that the morm in B¥* corresponds to !|u||r Note that the
image of | has coordinates which approach zero as j=—3o for
each 1. This is because, if we choose r, <r but large enough so

that \1JDai(r1
compact, and no beJ has |b-ai|p=r), then for all i, j

1
) still contains O (this can be done because 0 is

r
. - 1
Iu(fij,r)lp = |“(fij,r|D0(r1))|P lM(F) fij’rl)lp

where |1"1|p=r1

r.\J r.J
1) | 1
(B) ey, o1 s () Ml
r 1j,r1 P r rl
which approaches zero as je———>©, In other words, the compat-

ibility requirement with BrG—>Br forces u to be a very
1

special element of B:.

Now the subspace of B: consisting of elements whose coordin-
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ates approach zero is of course isomorphic to QP(J). By Lemma 2,
to show that ||uk||;——->0 it suffices to show that g(u, y—>0

for all ge QP(J)*. But if g = {gij} under the isomorphism in
Lemma 1, then

T
- 1 =
gl 1% LI uk(fij’r) 1% gij(r) uk(fij’rl) uk(f).

- 3
where f Zgij rjr fij,rl eBrl. And p (E)———>0 by
assumption.

We now discuss operators A ¢ End(B).

If B = K(J) with Banach basis {ej }jeJ’ then A corresponds
to a matrix {aij}i,jeJ in the usual way:
Aej = aijei'

It is easy to check that this is a norm-preserving isomorphism
between End(B) and the Banach space of matrices {aij} having

finite max |a and having the property that for

1lJ
each j, ath——->0 as 1=——dro, In other words, when B=K(J),

“{aij}" def 1j|P
A can be thought of as a matrix whose columns are in B and whose

rows are in B*.

An operator A 1is said to be "completely continuous" if it can
be approximated by operators having finite-dimensional image. In
terms of matrices, this means that aij—-bo as e uni-
formly in j; 1in other words, the norm of the i-th row approaches
zero. Such operators occur in Dwork's theory (e.g. [25]), and in
[82]) Serre gives a Riesz and Fredholm theory for them.

However, many simple operators are not completely continuous:

n
the identity operator, for example, or the operator ( %) on

{Zc1x1| c;0} (which has diagonal matrix a,,= i".

For simplicity, we shall assume our Banach spaces are of the

147



form QP(J). As mentioned before, all Qp-—Banach spaces which are

defined over a discrete valuation subfield of Qp are of this form.

Definition. For AeEnd(B) let g, = {)\er| A-X does not
have an inverse in End(B)} denote the spectrum of A.

Definition. An operator Ae End(B) 1is-called analytic if the
"resolvent" operator RA(z) = (z—A)-l is Krasner analytic in the

complement of ¢ in the sense that for all xe¢B and he B#*,

Al
h(RA(z)x) as a function of z lies in HO(GA). If B = QP(J),

then in terms of matrices this is equivalent to the condition that
each matrix entry in RA(z) be a Krasner analytic function of =z

on GA (and vanish at infinity).

Vishik's spectral theory applies to analytic operators A

whose spectrum 0, 1s a compact subset of Qp.

A
xdix acting on B ={I c1x1| c1—>0} has spectrum

Zp, and its resolvent is Krasner analytic on Ep.

Example.

It is possible for A to have a compact spectrum but not sat-
isfy the analyticity condition. Here is an example of Vishik where
the spectrum is empty. (Since the only Krasner analytic functions
on all of Q , by Lemma 3 of §3, are everywhere convergent power
series, and since only the zero power series has value 0 at
infinity, it follows that in the case of an empty spectrum RA(z)

has no chance of having matrix entries in HO(GA).)

Example. Let B be the set of {51}152

is finite and ai—PO as lw=p-o, Let A be the

such that ||{ai}|| &t

max |ai|p

shift operator A({ai}) = {bi} where b1=a

i+l
Claim. For all zeﬂp, (z=-A) has a continuous inverse fz.
Proof of claim. We want to find f: {bj}l—>{a1} such that
a; = fz,i({bj}) satisfies za;-a , =b,.

2
Case (1). |z|p_<_1. Set a =-b, ,-zb, _, 1-3
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which converges because b==%0 as j—3-®, C(learly {ai}eB;

zai—ai_'_l = bi; and this map fz is continuous.
- -2
Case (2). |z|p>1. Set a, = biz +b1+lz + . Again
{ai}eB; za;-a, ., = bi; and the map is continuous.

Let B be a Banach space of the form QP(J). Let F(x) be
an analytic operator-valued function on the complement of a compact

set o0, 1.e., for all ye¢B and heB* the Qp-—valued function

Fhy® st

belongs to Ho(a). Let ae0, |T|=r, and suppose that there are

h(F(x)y)

no b e 0 such that |b-a|p=r.

< < 1
Definition. Let Sn = nz F(a+Er). Then
=1

jF(x)dx = lim S . (4.3)
air def n>, pln n

Lemma 3. The limit (4.3) converges in the operator norm to a

continuous operator.

Proof. Let yeB. For all heB*, since Fh y51-10(5), it
»

follows that the ordinary Shnirelman integral Fh y(x)dx exists.
a,I "°*

That is, h(Sny) approaches a finite limit for all h. By Corol~-

lary 1 to Lemma 2, Sny converges in the norm. By the uniform

boundedness principle, Sn converges to a continuous operator.

Note that from the proof of Lemma 3 it follows that

h( F(x)dx y) = F. (x)dx. (4.4)
a;[l" a;[l" h,y

Spectral theorem (Vishik). Let B=Q (J), and let AeEnd(B)

be analytic with compact spectrum Oy Then the operator-valued

distribution

VR

o def A
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where V 1is the Vishik transform in §3, gives a continuous homomor-

phism from the algebra L(OA) to the algebra End(B). For f ¢
Br(OA), the operator uA(f) is defined as

z j f(x) (x-ai) (x—A)_l dx,
i ai,l"

where Do(r) = l.lDa (r) 1s a covering of ¢ by discs of radius r.
i

In addition, the following inversion formula holds:

R (2) = (uA(x).ﬁ) (4.5)

Corollary 1. For all j20, Aj = (“A(x)’ xj).

Proof of corollary. For any fixed z with |z|p> max |x|

) Xeq P
| 1 ~3~1.3
and |z| > ||Al], we can write = z x’ in (4.5).
p -x

§j=0 «

since |z|_ > ||al|, we also have R,(z) = z 23,0 By the

P A i=0
continuity of LIA: L(OA)—bEnd(B), this gives us ZZ-j-l Aj =

zz"j"l (u,(x),x%).  Since this holds for all large z, the

coefficients can be equated, and the corollary is proved.

Remark. For j=1, if we write (uA, f) using the j notation,
we obtain the usual form for a spectral theorem:

A= Jx duA(x).

A

Proof of the spectral theorem. First of all, it is easy to see
that uA(f) is a bounded operator, and that My L(oA)—>End(B)
is continuous. The key assertion is multiplicativity:

uA(fle) = uA(fl) uA(fz) for fl, f2 € L(GA).

'
Suppose that fl, f2 € Br' Let r>r >r1,

=1r,. We can choose r' so that r' ¢ {|a-—b|p| a,b eOA}, in

IIRCER A

which case r

Dy (x') = UDa (xr') by merely shrinking each disc. Thus, D_ (r.)
A

can be chosen so that D0 (rl) is obtained from
A

1 91
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=y D, (rl) Now

(x'~a,) (x~a )f, (x')f, (x)
_ 1 1 2 1 H1odw?
l'lA(fl) l'lA(fZ) zj_ ; a ',[T" a ',[I‘ (x'=8) (x - 4) e

5 it
Since S — ((x’ -A) - (x-A)-l) this equals
(x"-4) (x-8) ’ 4
-1 (x-a )f (x)
z z j (x' —aj)f (x") (x'~8) j ————-dxdx
i j aj’ 1’ 1

+ Z z a ',[r-l(x-ai)fl(x)(x"")—la,’[ -(—x——ij)_fxﬁdx dx.

But by Lemma 4 of the last section, the inner integral in the first
sum is zero, and the inner integral in the second sum is zero for
j#1 and is fz(x) for j=1. Thus,

= - Ay Llax =
My (E ) 1, (£)) = > | @ a) £, (O, (x) (x-A) " dx = u, (£ £,).
a,,
i1
Finally, to prove the inversion formula, for any yeB and
he B* we have

h(RA(z) y) (z) = SVR (z) by the theorem in §3

Rahey Ah,y
- (v, h’y(x),—) = 5((u, 0, 225) 9) -

Thus, (4.5) is an immediate consequence of the theorem on inverting
the p~adic Stieltjes transform. This completes the proof of the

theorem.

Corollary 2. Under the conditions of the theorem, the follow-

ing two conditions are equivalent: (1) dist(z,0) “RA(Z)” is

bounded as z=———3G; (2) uA is a projection-valued measure,

i.e., a bounded homomorphism from the Boolean algebra of compact-

open subsets of G, to the algebra End(B). In this case

A
max (:list(z,o) “RA(Z)”) = max ||_uA(U) I -
ze0 U
A
The proof is exactly like Steps 6 and 7 in the proof of the

theorem in §3.
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Corollary 3. Let B and Ae¢ End(B) be as in the theorem. For

all r>0 the resolvent RA(Z) can be uniformly approximated on
N

D_ (r) by rational functions :E A (z--a.)"j with operator
OA T f= 1j i

coefficients and with poles in OA.

The proof is just like Step 1 in the proof of the theorem in
§3,

Remarks. 1. One could alternately take Corollary 3 as the
definition of an analytic operator, in which case the spectral
theorem would hold for an arbitrary Banach space. However, in
practice the "weaker" definition is often easier to check than the

strong condition in the corollary.

2. The operators in Corollary 2 are the closest p-adic analogs
of normal operators or operators of scalar type [24] in a Hilbert

space.

3. It is not hard to prove that operators for which

h+l “

dist(z, OA) RA(z)||—>0 as z=———0 correspond to

"h-admissible" My (see the remark at the end of the last section).

4. Vishik has also proved a generalization to functions of
(the spectra of) several analytic operators. Namely, let Al,...,
An ¢ End(B) be commuting analytic operators with compact spectra

A

OA seees OA . Let 0 = OA Xesexg, C Q‘t and use the completed
1 n 1 n

tensor product to define B_(0) and L(0): B_(0) = B (0 )C) eee
r r r Al

@Br(oAn). L(o) = L(°A1)®"®L(°An)' Let = “A1®"°®“A

n
be the continuous homomorphism from the algebra L(0) to the

algebra End(B) which is made up from the Uy in the theorem.
i
For feL(0) denote f(Al,...,An) = pu(f). Then Vishik shows that

f(Al,...,An) is an analytic operator with compact spectrum
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of(A’.“’A)Cf(oA,...,oA), and for z#f(oA,...,oA) we
1 n 1 n 1 n

have

1
Rf(Al,...,An)(z) (uCrpseenrm)s o= f(xl,...,xn)) .

In addition, uf(A v A) = f*u , 1.e., if fLe L(f(oA,...,oA .,
1 1 n
then

u @) = u@®ef).
f(Al,...,An)
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